Search results for: Clusterization and classification algorithms
1044 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.
Keywords: Coastal transport, modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041043 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data
Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya
Abstract:
Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981042 Simulink Library for Reference Current Generation in Active DC Traction Substations
Authors: Mihaela Popescu, Alexandru Bitoleanu
Abstract:
This paper is focused on the reference current calculation in the compensation mode of the active DC traction substations. The so-called p-q theory of the instantaneous reactive power is used as theoretical foundation. The compensation goal of total compensation is taken into consideration for the operation under both sinusoidal and nonsinusoidal voltage conditions, through the two objectives of unity power factor and perfect harmonic cancelation. Four blocks of reference current generation implement the conceived algorithms and they are included in a specific Simulink library, which is useful in a DSP dSPACE-based platform working under Matlab/Simulink. The simulation results validate the correctness of the implementation and fulfillment of the compensation tasks.Keywords: Active power filter, DC traction, p-q theory, Simulink library.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421041 Low-Cost and Highly Accurate Motion Models for Three-Dimensional Local Landmark-based Autonomous Navigation
Authors: Gheorghe Galben, Daniel N. Aloi
Abstract:
Recently, the Spherical Motion Models (SMM-s) have been introduced [1]. These new models have been developed for 3D local landmark-base Autonomous Navigation (AN). This paper is revealing new arguments and experimental results to support the SMM-s characteristics. The accuracy and the robustness in performing a specific task are the main concerns of the new investigations. To analyze their performances of the SMM-s, the most powerful tools of estimation theory, the extended Kalman filter (EKF) and unscented Kalman filter (UKF), which give the best estimations in noisy environments, have been employed. The Monte Carlo validation implementations used to test the stability and robustness of the models have been employed as well.
Keywords: Autonomous navigation, extended kalman filter, unscented kalman filter, localization algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13111040 Approximating Maximum Weighted Independent Set Using Vertex Support
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Maximum Weighted Independent Set (MWIS) problem is a classic graph optimization NP-hard problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the MWIS problem is to find a vertex set S V whose total weight is maximum subject to no two vertices in S are adjacent. This paper presents a novel approach to approximate the MWIS of a graph using minimum weighted vertex cover of the graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the proposed algorithm can yield better solutions than other existing algorithms found in the literature for solving the MWIS.Keywords: weighted independent set, vertex cover, vertex support, heuristic, NP - hard problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20341039 Torque Based Selection of ANN for Fault Diagnosis of Wound Rotor Asynchronous Motor-Converter Association
Authors: Djalal Eddine Khodja, Boukhemis Chetate
Abstract:
In this paper, an automatic system of diagnosis was developed to detect and locate in real time the defects of the wound rotor asynchronous machine associated to electronic converter. For this purpose, we have treated the signals of the measured parameters (current and speed) to use them firstly, as indicating variables of the machine defects under study and, secondly, as inputs to the Artificial Neuron Network (ANN) for their classification in order to detect the defect type in progress. Once a defect is detected, the interpretation system of information will give the type of the defect and its place of appearance.Keywords: Artificial Neuron Networks (ANN), Effective Value (RMS), Experimental results, Failure detection Indicating values, Motor-converter unit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001038 Hand Written Digit Recognition by Multiple Classifier Fusion based on Decision Templates Approach
Authors: Reza Ebrahimpour, Samaneh Hamedi
Abstract:
Classifier fusion may generate more accurate classification than each of the basic classifiers. Fusion is often based on fixed combination rules like the product, average etc. This paper presents decision templates as classifier fusion method for the recognition of the handwritten English and Farsi numerals (1-9). The process involves extracting a feature vector on well-known image databases. The extracted feature vector is fed to multiple classifier fusion. A set of experiments were conducted to compare decision templates (DTs) with some combination rules. Results from decision templates conclude 97.99% and 97.28% for Farsi and English handwritten digits.Keywords: Decision templates, multi-layer perceptron, characteristics Loci, principle component analysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19561037 MP-SMC-I Method for Slip Suppression of Electric Vehicles under Braking
Authors: Tohru Kawabe
Abstract:
In this paper, a new SMC (Sliding Mode Control) method with MP (Model Predictive Control) integral action for the slip suppression of EV (Electric Vehicle) under braking is proposed. The proposed method introduce the integral term with standard SMC gain , where the integral gain is optimized for each control period by the MPC algorithms. The aim of this method is to improve the safety and the stability of EVs under braking by controlling the wheel slip ratio. There also include numerical simulation results to demonstrate the effectiveness of the method.Keywords: Sliding Mode Control, Model Predictive Control, Integral Action, Electric Vehicle, Slip suppression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22571036 Web Application to Profiling Scientific Institutions through Citation Mining
Authors: Hector D. Cortes, Jesus A. del Rio, Esther O. Garcia, Miguel Robles
Abstract:
Recently the use of data mining to scientific bibliographic data bases has been implemented to analyze the pathways of the knowledge or the core scientific relevances of a laureated novel or a country. This specific case of data mining has been named citation mining, and it is the integration of citation bibliometrics and text mining. In this paper we present an improved WEB implementation of statistical physics algorithms to perform the text mining component of citation mining. In particular we use an entropic like distance between the compression of text as an indicator of the similarity between them. Finally, we have included the recently proposed index h to characterize the scientific production. We have used this web implementation to identify users, applications and impact of the Mexican scientific institutions located in the State of Morelos.
Keywords: Citation Mining, Text Mining, Science Impact
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17561035 Improving Academic Performance Prediction using Voting Technique in Data Mining
Authors: Ikmal Hisyam Mohamad Paris, Lilly Suriani Affendey, Norwati Mustapha
Abstract:
In this paper we compare the accuracy of data mining methods to classifying students in order to predicting student-s class grade. These predictions are more useful for identifying weak students and assisting management to take remedial measures at early stages to produce excellent graduate that will graduate at least with second class upper. Firstly we examine single classifiers accuracy on our data set and choose the best one and then ensembles it with a weak classifier to produce simple voting method. We present results show that combining different classifiers outperformed other single classifiers for predicting student performance.Keywords: Classification, Data Mining, Prediction, Combination of Multiple Classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27541034 Using Fractional Factorial Designs for Variable Importance in Random Forest Models
Authors: Ewa. M. Sztendur, Neil T. Diamond
Abstract:
Random Forests are a powerful classification technique, consisting of a collection of decision trees. One useful feature of Random Forests is the ability to determine the importance of each variable in predicting the outcome. This is done by permuting each variable and computing the change in prediction accuracy before and after the permutation. This variable importance calculation is similar to a one-factor-at a time experiment and therefore is inefficient. In this paper, we use a regular fractional factorial design to determine which variables to permute. Based on the results of the trials in the experiment, we calculate the individual importance of the variables, with improved precision over the standard method. The method is illustrated with a study of student attrition at Monash University.
Keywords: Random Forests, Variable Importance, Fractional Factorial Designs, Student Attrition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19971033 Investigation of the Effects of Sampling Frequency on the THD of 3-Phase Inverters Using Space Vector Modulation
Authors: Khattab Ibrahim Al Qaisi, Nicholas Bowring
Abstract:
This paper presents the simulation results of the effects of sampling frequency on the total harmonic distortion (THD) of three-phase inverters using the space vector pulse width modulation (SVPWM) and space vector control (SVC) algorithms. The relationship between the variables was studied using curve fitting techniques, and it has been shown that, for 50 Hz inverters, there is an exponential relation between the sampling frequency and THD up to around 8500 Hz, beyond which the performance of the model becomes irregular, and there is an negative exponential relation between the sampling frequency and the marginal improvement to the THD. It has also been found that the performance of SVPWM is better than that of SVC with the same sampling frequency in most frequency range, including the range where the performance of the former is irregular.
Keywords: SVPWM, THD, DC-AC Inverter, Sampling Frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29771032 The New AIMD Congestion Control Algorithm
Authors: Hayder Natiq Jasem, Zuriati Ahmad Zukarnain, Mohamed Othman, Shamala Subramaniam
Abstract:
Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. AIMD (Additive Increase Multiplicative Decrease) is the best algorithm among the set of liner algorithms because it reflects good efficiency as well as good fairness. Our control model is based on the assumption of the original AIMD algorithm; we show that both efficiency and fairness of AIMD can be improved. We call our approach is New AIMD. We present experimental results with TCP that match the expectation of our theoretical analysis.
Keywords: Congestion control, Efficiency, Fairness, TCP, AIMD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24201031 Memetic Algorithm Based Path Planning for a Mobile Robot
Authors: Neda Shahidi, Hadi Esmaeilzadeh, Marziye Abdollahi, Caro Lucas
Abstract:
In this paper, the problem of finding the optimal collision free path for a mobile robot, the path planning problem, is solved using an advanced evolutionary algorithm called memetic algorithm. What is new in this work is a novel representation of solutions for evolutionary algorithms that is efficient, simple and also compatible with memetic algorithm. The new representation makes it possible to solve the problem with a small population and in a few generations. It also makes the genetic operator simple and allows using an efficient local search operator within the evolutionary algorithm. The proposed algorithm is applied to two instances of path planning problem and the results are available.
Keywords: Path planning problem, Memetic Algorithm, Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17401030 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20671029 Unconventional Calculus Spreadsheet Functions
Authors: Chahid K. Ghaddar
Abstract:
The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.Keywords: Calculus functions, nonlinear systems, differential algebraic equations, solvers, spreadsheet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24591028 Biometric Methods and Implementation of Algorithms
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Shailendra Singh
Abstract:
Biometric measures of one kind or another have been used to identify people since ancient times, with handwritten signatures, facial features, and fingerprints being the traditional methods. Of late, Systems have been built that automate the task of recognition, using these methods and newer ones, such as hand geometry, voiceprints and iris patterns. These systems have different strengths and weaknesses. This work is a two-section composition. In the starting section, we present an analytical and comparative study of common biometric techniques. The performance of each of them has been viewed and then tabularized as a result. The latter section involves the actual implementation of the techniques under consideration that has been done using a state of the art tool called, MATLAB. This tool aids to effectively portray the corresponding results and effects.Keywords: Matlab, Recognition, Facial Vectors, Functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31921027 Framework and Characterization of Physical Internet
Authors: Charifa Fergani, Adiba El Bouzekri El Idrissi, Suzanne Marcotte, Abdelowahed Hajjaji
Abstract:
Over the last years, a new paradigm known as Physical Internet has been developed, and studied in logistics management. The purpose of this global and open system is to deal with logistics grand challenge by setting up an efficient and sustainable Logistics Web. The purpose of this paper is to review scientific articles dedicated to Physical Internet topic, and to provide a clustering strategy enabling to classify the literature on the Physical Internet, to follow its evolution, as well as to criticize it. The classification is based on three factors: Logistics Web, organization, and resources. Several papers about Physical Internet have been classified and analyzed along the Logistics Web, resources and organization views at a strategic, tactical and operational level, respectively. A developed cluster analysis shows which topics of the Physical Internet that are the less covered actually. Future researches are outlined for these topics.Keywords: Logistics web, Physical Internet, PI characterization, taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8571026 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis
Authors: Reza Nadimi, Fariborz Jolai
Abstract:
This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251025 An Optimization Algorithm Based on Dynamic Schema with Dissimilarities and Similarities of Chromosomes
Authors: Radhwan Yousif Sedik Al-Jawadi
Abstract:
Optimization is necessary for finding appropriate solutions to a range of real-life problems. In particular, genetic (or more generally, evolutionary) algorithms have proved very useful in solving many problems for which analytical solutions are not available. In this paper, we present an optimization algorithm called Dynamic Schema with Dissimilarity and Similarity of Chromosomes (DSDSC) which is a variant of the classical genetic algorithm. This approach constructs new chromosomes from a schema and pairs of existing ones by exploring their dissimilarities and similarities. To show the effectiveness of the algorithm, it is tested and compared with the classical GA, on 15 two-dimensional optimization problems taken from literature. We have found that, in most cases, our method is better than the classical genetic algorithm.Keywords: Genetic algorithm, similarity and dissimilarity, chromosome injection, dynamic schema.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12971024 EHW from Consumer Point of View: Consumer-Triggered Evolution
Authors: Yerbol Sapargaliyev, Tatiana Kalganova
Abstract:
Evolvable Hardware (EHW) has been regarded as adaptive system acquired by wide application market. Consumer market of any good requires diversity to satisfy consumers- preferences. Adaptation of EHW is a key technology that could provide individual approach to every particular user. This situation raises a question: how to set target for evolutionary algorithm? The existing techniques do not allow consumer to influence evolutionary process. Only designer at the moment is capable to influence the evolution. The proposed consumer-triggered evolution overcomes this problem by introducing new features to EHW that help adaptive system to obtain targets during consumer stage. Classification of EHW is given according to responsiveness, imitation of human behavior and target circuit response. Home intelligent water heating system is considered as an example.
Keywords: Actuators, consumer-triggered evolution, evolvable hardware, sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14861023 A New Face Recognition Method using PCA, LDA and Neural Network
Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani
Abstract:
In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32131022 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping
Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah
Abstract:
Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.
Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23921021 Dissipation of Higher Mode using Numerical Integration Algorithm in Dynamic Analysis
Authors: Jin Sup Kim, Woo Young Jung, Minho Kwon
Abstract:
In general dynamic analyses, lower mode response is of interest, however the higher modes of spatially discretized equations generally do not represent the real behavior and not affects to global response much. Some implicit algorithms, therefore, are introduced to filter out the high-frequency modes using intended numerical error. The objective of this study is to introduce the P-method and PC α-method to compare that with dissipation method and Newmark method through the stability analysis and numerical example. PC α-method gives more accuracy than other methods because it based on the α-method inherits the superior properties of the implicit α-method. In finite element analysis, the PC α-method is more useful than other methods because it is the explicit scheme and it achieves the second order accuracy and numerical damping simultaneously.Keywords: Dynamic, α-Method, P-Method, PC α-Method, Newmark method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30781020 Self-evolving Neural Networks Based On PSO and JPSO Algorithms
Authors: Abdussamad Ismail, Dong-Sheng Jeng
Abstract:
A self-evolution algorithm for optimizing neural networks using a combination of PSO and JPSO is proposed. The algorithm optimizes both the network topology and parameters simultaneously with the aim of achieving desired accuracy with less complicated networks. The performance of the proposed approach is compared with conventional back-propagation networks using several synthetic functions, with better results in the case of the former. The proposed algorithm is also implemented on slope stability problem to estimate the critical factor of safety. Based on the results obtained, the proposed self evolving network produced a better estimate of critical safety factor in comparison to conventional BPN network.
Keywords: Neural networks, Topology evolution, Particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18081019 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine
Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang
Abstract:
An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.
Keywords: Image texture analysis, feature extraction, target detection, pattern classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801018 Compression of Semistructured Documents
Authors: Leo Galambos, Jan Lansky, Katsiaryna Chernik
Abstract:
EGOTHOR is a search engine that indexes the Web and allows us to search the Web documents. Its hit list contains URL and title of the hits, and also some snippet which tries to shortly show a match. The snippet can be almost always assembled by an algorithm that has a full knowledge of the original document (mostly HTML page). It implies that the search engine is required to store the full text of the documents as a part of the index. Such a requirement leads us to pick up an appropriate compression algorithm which would reduce the space demand. One of the solutions could be to use common compression methods, for instance gzip or bzip2, but it might be preferable if we develop a new method which would take advantage of the document structure, or rather, the textual character of the documents. There already exist a special compression text algorithms and methods for a compression of XML documents. The aim of this paper is an integration of the two approaches to achieve an optimal level of the compression ratioKeywords: Compression, search engine, HTML, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15771017 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles
Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou
Abstract:
The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.
Keywords: Fault detection, feature selection, machine learning, predictive maintenance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7811016 New Coordinate System for Countries with Big Territories
Authors: Mohammed Sabri Ali Akresh
Abstract:
The modern technologies and developments in computer and Global Positioning System (GPS) as well as Geographic Information System (GIS) and total station TS. This paper presents a new proposal for coordinates system by a harmonic equations “United projections”, which have five projections (Mercator, Lambert, Russell, Lagrange, and compound of projection) in one zone coordinate system width 14 degrees, also it has one degree for overlap between zones, as well as two standards parallels for zone from 10 S to 45 S. Also this paper presents two cases; first case is to compare distances between a new coordinate system and UTM, second case creating local coordinate system for the city of Sydney to measure the distances directly from rectangular coordinates using projection of Mercator, Lambert and UTM.
Keywords: Harmonic equations, coordinate system, projections, algorithms and parallels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18461015 The Problem of Using the Calculation of the Critical Path to Solver Instances of the Job Shop Scheduling Problem
Authors: Marco Antonio Cruz-Chávez, Juan Frausto-Solís, Fernando Ramos-Quintana
Abstract:
A procedure commonly used in Job Shop Scheduling Problem (JSSP) to evaluate the neighborhoods functions that use the non-deterministic algorithms is the calculation of the critical path in a digraph. This paper presents an experimental study of the cost of computation that exists when the calculation of the critical path in the solution for instances in which a JSSP of large size is involved. The results indicate that if the critical path is use in order to generate neighborhoods in the meta-heuristics that are used in JSSP, an elevated cost of computation exists in spite of the fact that the calculation of the critical path in any digraph is of polynomial complexity.
Keywords: Job Shop, CPM, critical path, neighborhood, meta-heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303