Search results for: machine defect frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3004

Search results for: machine defect frequency

1654 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
1653 A Questionnaire-Based Survey: Therapist’s Response towards the Upper Limb Disorder Learning Tool

Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah

Abstract:

Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).

Keywords: Upper limb disorders, Clinical education tool, Inter/intra-raters variability, Spasticity, Modified Ashworth Scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1652 Design and Performance Comparison of Metamaterial Based Antenna for 4G/5G Mobile Devices

Authors: Jalal Khan, Daniyal Ali Sehrai, Shakeel Ahmad

Abstract:

This paper presents the design and performance evaluation of multiband metamaterial based antenna operating in the 3.6 GHz (4G), 14.33 GHz, and 28.86 GHz (5G) frequency bands, for future mobile and handheld devices. The radiating element of the proposed design is made up of a conductive material supported by a 1.524 mm thicker Rogers-4003 substrate, having a relative dielectric constant and loss tangent of 3.55 and 0.0027, respectively. The substrate is backed by truncated ground plane. The future mobile communication system is based on higher frequencies, which are highly affected by the atmospheric conditions. Therefore, to overcome the path loss problem, essential enhancements and improvements must be made in the overall performance of the antenna. The traditional ground plane does not provide the in-phase reflection and surface wave suppression due to which side and back lobes are produced. This will affect the antenna performance in terms of gain and efficiency. To enhance the overall performance of the antenna, a metamaterial acting as a high impedance surface (HIS) is used as a reflector in the proposed design. The simulated gain of the metamaterial based antenna is enhanced from {2.76-6.47, 4.83-6.71 and 7.52-7.73} dB at 3.6, 14.33 and 28.89 GHz, respectively relative to the gain of the antenna backed by a traditional ground plane. The proposed antenna radiated efficiently with a radiated efficiency (>85 %) in all the three frequency bands with and without metamaterial surface. The total volume of the antenna is (L x W x h=45 x 40 x 1.524) mm3. The antenna can be potentially used for wireless handheld devices and mobile terminal. All the simulations have been performed using the Computer Simulation Technology (CST) software.

Keywords: Multiband, fourth generation (4G), fifth generation (5G), metamaterial, CST MWS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
1651 Developing Laser Spot Position Determination and PRF Code Detection with Quadrant Detector

Authors: Mohamed Fathy Heweage, Xiao Wen, Ayman Mokhtar, Ahmed Eldamarawy

Abstract:

In this paper, we are interested in modeling, simulation, and measurement of the laser spot position with a quadrant detector. We enhance detection and tracking of semi-laser weapon decoding system based on microcontroller. The system receives the reflected pulse through quadrant detector and processes the laser pulses through a processing circuit, a microcontroller decoding laser pulse reflected by the target. The seeker accuracy will be enhanced by the decoding system, the laser detection time based on the receiving pulses number is reduced, a gate is used to limit the laser pulse width. The model is implemented based on Pulse Repetition Frequency (PRF) technique with two microcontroller units (MCU). MCU1 generates laser pulses with different codes. MCU2 decodes the laser code and locks the system at the specific code. The codes EW selected based on the two selector switches. The system is implemented and tested in Proteus ISIS software. The implementation of the full position determination circuit with the detector is produced. General system for the spot position determination was performed with the laser PRF for incident radiation and the mechanical system for adjusting system at different angles. The system test results show that the system can detect the laser code with only three received pulses based on the narrow gate signal, and good agreement between simulation and measured system performance is obtained.

Keywords: 4-quadrant detector, pulse code detection, laser guided weapons, pulse repetition frequency, ATmega 32 microcontrollers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1650 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1649 Bone Mineral Density and Trabecular Bone Score in Ukrainian Women with Obesity

Authors: Vladyslav Povoroznyuk, Nataliia Dzerovych, Larysa Martynyuk, Tetiana Kovtun

Abstract:

Obesity and osteoporosis are the two diseases whose increasing prevalence and high impact on the global morbidity and mortality, during the two recent decades, have gained a status of major health threats worldwide. Obesity purports to affect the bone metabolism through complex mechanisms. Debated data on the connection between the bone mineral density and fracture prevalence in the obese patients are widely presented in literature. There is evidence that the correlation of weight and fracture risk is sitespecific. This study is aimed at determining the connection between the bone mineral density (BMD) and trabecular bone score (TBS) parameters in Ukrainian women suffering from obesity. We examined 1025 40-89-year-old women, divided them into the groups according to their body mass index: Group A included 360 women with obesity whose BMI was ≥30 kg/m2, and Group B – 665 women with no obesity and BMI of <30 kg/m2. The BMD of total body, lumbar spine at the site L1-L4, femur and forearm were measured by DXA (Prodigy, GEHC Lunar, Madison, WI, USA). The TBS of L1- L4 was assessed by means of TBS iNsight® software installed on our DXA machine (product of Med-Imaps, Pessac, France). In general, obese women had a significantly higher BMD of lumbar spine, femoral neck, proximal femur, total body and ultradistal forearm (p<0.001) in comparison with women without obesity. The TBS of L1-L4 was significantly lower in obese women compared to nonobese women (p<0.001). The BMD of lumbar spine, femoral neck and total body differed to a significant extent in women of 40-49, 50- 59, 60-69 and 70-79 years (p<0.05). At same time, in women aged 80-89 years the BMD of lumbar spine (p=0.09), femoral neck (p=0.22) and total body (p=0.06) barely differed. The BMD of ultradistal forearm was significantly higher in women of all age groups (p<0.05). The TBS of L1-L4 in all the age groups tended to reveal the lower parameters in obese women compared with the nonobese; however, those data were not statistically significant. By contrast, a significant positive correlation was observed between the fat mass and the BMD at different sites. The correlation between the fat mass and TBS of L1-L4 was also significant, although negative. Women with vertebral fractures had a significantly lower body weight, body mass index and total body fat mass in comparison with women without vertebral fractures in their anamnesis. In obese women the frequency of vertebral fractures was 27%, while in women without obesity – 57%.

Keywords: Bone mineral density, trabecular bone score, obesity, women.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1648 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
1647 Contextual Distribution for Textual Alignment

Authors: Yuri Bizzoni, Marianne Reboul

Abstract:

Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.

Keywords: Translation studies, machine translation, computational linguistics, distributional semantics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1646 SUPAR: System for User-Centric Profiling of Association Rules in Streaming Data

Authors: Sarabjeet Kaur Kochhar

Abstract:

With a surge of stream processing applications novel techniques are required for generation and analysis of association rules in streams. The traditional rule mining solutions cannot handle streams because they generally require multiple passes over the data and do not guarantee the results in a predictable, small time. Though researchers have been proposing algorithms for generation of rules from streams, there has not been much focus on their analysis. We propose Association rule profiling, a user centric process for analyzing association rules and attaching suitable profiles to them depending on their changing frequency behavior over a previous snapshot of time in a data stream. Association rule profiles provide insights into the changing nature of associations and can be used to characterize the associations. We discuss importance of characteristics such as predictability of linkages present in the data and propose metric to quantify it. We also show how association rule profiles can aid in generation of user specific, more understandable and actionable rules. The framework is implemented as SUPAR: System for Usercentric Profiling of Association Rules in streaming data. The proposed system offers following capabilities: i) Continuous monitoring of frequency of streaming item-sets and detection of significant changes therein for association rule profiling. ii) Computation of metrics for quantifying predictability of associations present in the data. iii) User-centric control of the characterization process: user can control the framework through a) constraint specification and b) non-interesting rule elimination.

Keywords: Data Streams, User subjectivity, Change detection, Association rule profiles, Predictability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1645 Design of Ka-Band Satellite Links in Indonesia

Authors: Zulfajri Basri Hasanuddin

Abstract:

There is an increasing demand for broadband services in Indonesia. Therefore, the answer is the use of Ka-Band which has some advantages such as wider bandwidth, the higher transmission speeds, and smaller size of antenna in the ground. However, rain attenuation is the primary factor in the degradation of signal at the Kaband. In this paper, the author will determine whether the Ka-band frequency can be implemented in Indonesia which has high intensity of rainfall.

Keywords: Ka-Band, Link Budget, Link Availability, BER, Eb/No, C/N.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3682
1644 Implication and Genetic Variations on Lipid Profile of the Fasting Respondent

Authors: Rohayu Izanwati M. R., Muhamad Ridhwan M. R., Abbe Maleyki M. J., Ahmad Zubaidi A. L., Zahri M. K.

Abstract:

PPARs function as regulators of lipid and lipoprotein metabolism. The aim of the study was to compare the lipid profile between two phases of fasting and to examine the frequency and relationship of peroxisome proliferator-activated receptor, PPARα gene polymorphisms to lipid profile in fasting respondents. We conducted a case-control study protocol, which included 21 healthy volunteers without gender discrimination at the age of 18 years old. 3 ml of blood sample was drawn before the fasting phase and during the fasting phase (in Ramadhan month). 1ml of serum for the lipid profile was analyzed by using the automated chemistry analyser (Olympus, AU 400) and the data were analysed using the Paired T-Test (SPSS ver.20). DNA was extracted and PCR was conducted utilising 6 sets of primer. Primers were designed within 6 exons of interest in PPARα gene. Genetic and metabolic characteristics of fasting respondents and controls were estimated and compared. Fasting respondents were significantly have lowered the LDL levels (p=0.03). There were no polymorphisms detected except in exon 1 with 5% of this population study respectively. The polymorphisms in exon 1 of the PPARα gene were found in low frequency. Regarding the 1375G/T and 1386G/T polymorphisms in the exon 1 of the PPARα gene, the T-allele in fasting phase had no association with the decreased LDL levels (Fisher Exact Test). However this association is more promising when the sample size is larger in order to elucidate the precise impact of the polymorphisms on lipid profile in the population. In conclusion, the PPARα gene polymorphisms do not appear to affect the LDL of fasting respondents.

Keywords: Fasting, LDL, Peroxisome proliferator activated receptor alpha (PPAR-α), Polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
1643 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification

Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian

Abstract:

Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.

Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775
1642 Classification of Acoustic Emission Based Partial Discharge in Oil Pressboard Insulation System Using Wavelet Analysis

Authors: Prasanta Kundu, N.K. Kishore, A.K. Sinha

Abstract:

Insulation used in transformer is mostly oil pressboard insulation. Insulation failure is one of the major causes of catastrophic failure of transformers. It is established that partial discharges (PD) cause insulation degradation and premature failure of insulation. Online monitoring of PDs can reduce the risk of catastrophic failure of transformers. There are different techniques of partial discharge measurement like, electrical, optical, acoustic, opto-acoustic and ultra high frequency (UHF). Being non invasive and non interference prone, acoustic emission technique is advantageous for online PD measurement. Acoustic detection of p.d. is based on the retrieval and analysis of mechanical or pressure signals produced by partial discharges. Partial discharges are classified according to the origin of discharges. Their effects on insulation deterioration are different for different types. This paper reports experimental results and analysis for classification of partial discharges using acoustic emission signal of laboratory simulated partial discharges in oil pressboard insulation system using three different electrode systems. Acoustic emission signal produced by PD are detected by sensors mounted on the experimental tank surface, stored on an oscilloscope and fed to computer for further analysis. The measured AE signals are analyzed using discrete wavelet transform analysis and wavelet packet analysis. Energy distribution in different frequency bands of discrete wavelet decomposed signal and wavelet packet decomposed signal is calculated. These analyses show a distinct feature useful for PD classification. Wavelet packet analysis can sort out any misclassification arising out of DWT in most cases.

Keywords: Acoustic emission, discrete wavelet transform, partial discharge, wavelet packet analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
1641 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
1640 An Semantic Algorithm for Text Categoritation

Authors: Xu Zhao

Abstract:

Text categorization techniques are widely used to many Information Retrieval (IR) applications. In this paper, we proposed a simple but efficient method that can automatically find the relationship between any pair of terms and documents, also an indexing matrix is established for text categorization. We call this method Indexing Matrix Categorization Machine (IMCM). Several experiments are conducted to show the efficiency and robust of our algorithm.

Keywords: Text categorization, Sub-space learning, Latent Semantic Space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1639 Deployment of Beyond 4G Wireless Communication Networks with Carrier Aggregation

Authors: Bahram Khan, Anderson Rocha Ramos, Rui R. Paulo, Fernando J. Velez

Abstract:

With the growing demand for a new blend of applications, the users dependency on the internet is increasing day by day. Mobile internet users are giving more attention to their own experiences, especially in terms of communication reliability, high data rates and service stability on move. This increase in the demand is causing saturation of existing radio frequency bands. To address these challenges, researchers are investigating the best approaches, Carrier Aggregation (CA) is one of the newest innovations, which seems to fulfill the demands of the future spectrum, also CA is one the most important feature for Long Term Evolution - Advanced (LTE-Advanced). For this purpose to get the upcoming International Mobile Telecommunication Advanced (IMT-Advanced) mobile requirements (1 Gb/s peak data rate), the CA scheme is presented by 3GPP, which would sustain a high data rate using widespread frequency bandwidth up to 100 MHz. Technical issues such as aggregation structure, its implementations, deployment scenarios, control signal techniques, and challenges for CA technique in LTE-Advanced, with consideration of backward compatibility, are highlighted in this paper. Also, performance evaluation in macro-cellular scenarios through a simulation approach is presented, which shows the benefits of applying CA, low-complexity multi-band schedulers in service quality, system capacity enhancement and concluded that enhanced multi-band scheduler is less complex than the general multi-band scheduler, which performs better for a cell radius longer than 1800 m (and a PLR threshold of 2%).

Keywords: Component carrier, carrier aggregation, LTE-Advanced, scheduling, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
1638 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1262
1637 Investigation of I/Q Imbalance in Coherent Optical OFDM System

Authors: R. S. Fyath, Mustafa A. B. Al-Qadi

Abstract:

The inphase/quadrature (I/Q) amplitude and phase imbalance effects are studied in coherent optical orthogonal frequency division multiplexing (CO-OFDM) systems. An analytical model for the I/Q imbalance is developed and supported by simulation results. The results indicate that the I/Q imbalance degrades the BER performance considerably.

Keywords: Coherent detection, I/Q imbalance, OFDM, optical communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
1636 Vibration Analysis of Magnetostrictive Nano-Plate by Using Modified Couple Stress and Nonlocal Elasticity Theories

Authors: Hamed Khani Arani, Mohammad Shariyat, Armaghan Mohammadian

Abstract:

In the present study, the free vibration of magnetostrictive nano-plate (MsNP) resting on the Pasternak foundation is investigated. Firstly, the modified couple stress (MCS) and nonlocal elasticity theories are compared together and taken into account to consider the small scale effects; in this paper not only two theories are analyzed but also it improves the MCS theory is more accurate than nonlocal elasticity theory in such problems. A feedback control system is utilized to investigate the effects of a magnetic field. First-order shear deformation theory (FSDT), Hamilton’s principle and energy method are utilized in order to drive the equations of motion and these equations are solved by differential quadrature method (DQM) for simply supported boundary conditions. The MsNP undergoes in-plane forces in x and y directions. In this regard, the dimensionless frequency is plotted to study the effects of small scale parameter, magnetic field, aspect ratio, thickness ratio and compression and tension loads. Results indicate that these parameters play a key role on the natural frequency. According to the above results, MsNP can be used in the communications equipment, smart control vibration of nanostructure especially in sensor and actuators such as wireless linear micro motor and smart nano valves in injectors.

Keywords: Feedback control system, magnetostrictive nano-plate, modified couple stress theory, nonlocal elasticity theory, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
1635 Optimal Image Representation for Linear Canonical Transform Multiplexing

Authors: Navdeep Goel, Salvador Gabarda

Abstract:

Digital images are widely used in computer applications. To store or transmit the uncompressed images requires considerable storage capacity and transmission bandwidth. Image compression is a means to perform transmission or storage of visual data in the most economical way. This paper explains about how images can be encoded to be transmitted in a multiplexing time-frequency domain channel. Multiplexing involves packing signals together whose representations are compact in the working domain. In order to optimize transmission resources each 4 × 4 pixel block of the image is transformed by a suitable polynomial approximation, into a minimal number of coefficients. Less than 4 × 4 coefficients in one block spares a significant amount of transmitted information, but some information is lost. Different approximations for image transformation have been evaluated as polynomial representation (Vandermonde matrix), least squares + gradient descent, 1-D Chebyshev polynomials, 2-D Chebyshev polynomials or singular value decomposition (SVD). Results have been compared in terms of nominal compression rate (NCR), compression ratio (CR) and peak signal-to-noise ratio (PSNR) in order to minimize the error function defined as the difference between the original pixel gray levels and the approximated polynomial output. Polynomial coefficients have been later encoded and handled for generating chirps in a target rate of about two chirps per 4 × 4 pixel block and then submitted to a transmission multiplexing operation in the time-frequency domain.

Keywords: Chirp signals, Image multiplexing, Image transformation, Linear canonical transform, Polynomial approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129
1634 A Numerical Study on Semi-Active Control of a Bridge Deck under Seismic Excitation

Authors: A. Yanik, U. Aldemir

Abstract:

This study investigates the benefits of implementing the semi-active devices in relation to passive viscous damping in the context of seismically isolated bridge structures. Since the intrinsically nonlinear nature of semi-active devices prevents the direct evaluation of Laplace transforms, frequency response functions are compiled from the computed time history response to sinusoidal and pulse-like seismic excitation. A simple semi-active control policy is used in regard to passive linear viscous damping and an optimal non-causal semi-active control strategy. The control strategy requires optimization. Euler-Lagrange equations are solved numerically during this procedure. The optimal closed-loop performance is evaluated for an idealized controllable dash-pot. A simplified single-degree-of-freedom model of an isolated bridge is used as numerical example. Two bridge cases are investigated. These cases are; bridge deck without the isolation bearing and bridge deck with the isolation bearing. To compare the performances of the passive and semi-active control cases, frequency dependent acceleration, velocity and displacement response transmissibility ratios Ta(w), Tv(w), and Td(w) are defined. To fully investigate the behavior of the structure subjected to the sinusoidal and pulse type excitations, different damping levels are considered. Numerical results showed that, under the effect of external excitation, bridge deck with semi-active control showed better structural performance than the passive bridge deck case.

Keywords: Bridge structures, passive control, seismic, semi-active control, viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
1633 Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems

Authors: Muhammad Rehan Khalid, Muhammad Haroon Siddiqui, Danish Ilyas

Abstract:

This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.

Keywords: Adaptive Coded Modulation, MQAM, MIMO, OFDM, Codebooks, Feedback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1632 Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI ≤ 29.9 kg/m2), and Group B – 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p < 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p < 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients.

Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
1631 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
1630 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis

Authors: A.K. Tangirala, S. Babji

Abstract:

In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.

Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534
1629 Modern Vibration Signal Processing Techniques for Vehicle Gearbox Fault Diagnosis

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

This paper presents modern vibration signalprocessing techniques for vehicle gearbox fault diagnosis, via the wavelet analysis and the Squared Envelope (SE) technique. The wavelet analysis is regarded as a powerful tool for the detection of sudden changes in non-stationary signals. The Squared Envelope (SE) technique has been extensively used for rolling bearing diagnostics. In the present work a scheme of using the Squared Envelope technique for early detection of gear tooth pit. The pitting defect is manufactured on the tooth side of a fifth speed gear on the intermediate shaft of a vehicle gearbox. The objective is to supplement the current techniques of gearbox fault diagnosis based on using the raw vibration and ordered signals. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The gearbox used for experimental measurements is the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive; a five-speed gearbox with final drive gear and front wheel differential. The results show that the approaches methods are effective for detecting and diagnosing localized gear faults in early stage under different operation conditions, and are more sensitive and robust than current gear diagnostic techniques.

Keywords: Wavelet analysis, Squared Envelope, gear faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
1628 Data Compression in Ultrasonic Network Communication via Sparse Signal Processing

Authors: Beata Zima, Octavio A. Márquez Reyes, Masoud Mohammadgholiha, Jochen Moll, Luca De Marchi

Abstract:

This document presents the approach of using compressed sensing in signal encoding and information transferring within a guided wave sensor network, comprised of specially designed frequency steerable acoustic transducers (FSATs). Wave propagation in a damaged plate was simulated using commercial FEM-based software COMSOL. Guided waves were excited by means of FSATs, characterized by the special shape of its electrodes, and modeled using PIC255 piezoelectric material. The special shape of the FSAT, allows for focusing wave energy in a certain direction, accordingly to the frequency components of its actuation signal, which makes a larger monitored area available. The process begins when a FSAT detects and records reflection from damage in the structure, this signal is then encoded and prepared for transmission, using a combined approach, based on Compressed Sensing Matching Pursuit and Quadrature Amplitude Modulation (QAM). After codification of the signal is in binary, the information is transmitted between the nodes in the network. The message reaches the last node, where it is finally decoded and processed, to be used for damage detection and localization purposes. The main aim of the investigation is to determine the location of detected damage using reconstructed signals. The study demonstrates that the special steerable capabilities of FSATs, not only facilitate the detection of damage but also permit transmitting the damage information to a chosen area in a specific direction of the investigated structure.

Keywords: Data compression, ultrasonic communication, guided waves, FEM analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378
1627 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a threedimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: Fatigue, test rig, crack initiation, life, rail, squats.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
1626 A Methodology for Creating Energy Sustainability in an Enterprise

Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala

Abstract:

As we enter the new era of Artificial Intelligence (AI) and cloud computing, we mostly rely on the machine and natural language processing capabilities of AI, and energy efficient hardware and software devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and to sustain the depletion of natural resources. The core pillars of sustainability are Economic, Environmental, and Social, which are also informally referred to as 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core sustainability model in the enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand there is also a growing concern in many industries on how to reduce carbon emission and conserve natural resources while adopting sustainability in the corporate business models and policies. In our paper, we would like to discuss the driving forces such as climate changes, natural disasters, pandemic, disruptive technologies, corporate policies, scaled business models and emerging social media and AI platforms that influence the 3 main pillars of sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increase recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (shared IT services, cloud computing and application modernization) with the vision for a sustainable environment.

Keywords: AI, cloud computing, machine learning, social media platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203
1625 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi

Abstract:

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

Keywords: RFID, asset tracking system, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649