Search results for: extreme learning machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3029

Search results for: extreme learning machine

1709 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
1708 The Experimental Measurement of the LiBr Concentration of a Solar Absorption Machine

Authors: N. Hatraf, L. Merabeti, Z. Neffeh, W. Taane

Abstract:

The excessive consumption of fossil energies (electrical energy) during summer caused by the technological development involves more and more climate warming.

In order to reduce the worst impact of gas emissions produced from classical air conditioning, heat driven solar absorption chiller is pretty promising; it consists on using solar as motive energy which is clean and environmentally friendly to provide cold.

Solar absorption machine is composed by four components using Lithium Bromide /water as a refrigerating couple. LiBr- water is the most promising in chiller applications due to high safety, high volatility ratio, high affinity, high stability and its high latent heat. The lithium bromide solution is constitute by the salt lithium bromide which absorbs water under certain conditions of pressure and temperature however if the concentration of the solution is high in the absorption chillers; which exceed 70%, the solution will crystallize.

The main aim of this article is to study the phenomena of the crystallization and to evaluate how the dependence between the electric conductivity and the concentration which should be controlled.

Keywords: Absorption chillers, crystallization, experimental results, Lithium Bromide solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3758
1707 Digital Transformation in Developing Countries: A Study into BIM Adoption in Thai Design and Engineering SMEs

Authors: Prompt Udomdech, Eleni Papadonikolaki, Andrew Davies

Abstract:

Building Information Modelling (BIM) is the major technological trend among built environment organisations. Digitalising businesses and operations, BIM brings forth a digital transformation in any built environment industry. The adoption of BIM presents challenges for organisations, especially Small- and Medium-sized Enterprises (SMEs). The main problem for built environment SMEs is the lack of project actors with adequate BIM competences. The research highlights learning in projects as the key and explores into the learning of BIM in projects of designers and engineers within Thai design and engineering SMEs. The study uncovers three impeding attributes which are: a) lack of English proficiency; b) unfamiliarity with digital technologies; and c) absence of public standards. This research expands on the literature of BIM competences and adoption.

Keywords: BIM competences and adoption, digital transformation, learning in projects, SMEs, and developing built environment industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 995
1706 A Reinforcement Learning Approach for Evaluation of Real-Time Disaster Relief Demand and Network Condition

Authors: Ali Nadi, Ali Edrissi

Abstract:

Relief demand and transportation links availability is the essential information that is needed for every natural disaster operation. This information is not in hand once a disaster strikes. Relief demand and network condition has been evaluated based on prediction method in related works. Nevertheless, prediction seems to be over or under estimated due to uncertainties and may lead to a failure operation. Therefore, in this paper a stochastic programming model is proposed to evaluate real-time relief demand and network condition at the onset of a natural disaster. To address the time sensitivity of the emergency response, the proposed model uses reinforcement learning for optimization of the total relief assessment time. The proposed model is tested on a real size network problem. The simulation results indicate that the proposed model performs well in the case of collecting real-time information.

Keywords: Disaster management, real-time demand, reinforcement learning, relief demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
1705 New Product-Type Estimators for the Population Mean Using Quartiles of the Auxiliary Variable

Authors: Amer Ibrahim Falah Al-Omari

Abstract:

In this paper, we suggest new product-type estimators for the population mean of the variable of interest exploiting the first or the third quartile of the auxiliary variable. We obtain mean square error equations and the bias for the estimators. We study the properties of these estimators using simple random sampling (SRS) and ranked set sampling (RSS) methods. It is found that, SRS and RSS produce approximately unbiased estimators of the population mean. However, the RSS estimators are more efficient than those obtained using SRS based on the same number of measured units for all values of the correlation coefficient.

Keywords: Product estimator, auxiliary variable, simple random sampling, extreme ranked set sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
1704 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
1703 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition

Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh

Abstract:

Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.

Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
1702 Types of Motivation to Learn English: A Case Study of a Rural University, in Quintana Roo, Mexico

Authors: Sandra Valdez-Hernández

Abstract:

Motivation is one of the most important factors when teaching language. Most institutions, at least in Mexico, pay low attention to the types of motivation students have when they are studying English; however, considering the motivation they have may lead to better understanding about their needs and purposes for learning English and the professors may understand and focus on their interests for making them persist in action through the course. This topic has been widely investigated in different countries, but more research needs to be done in Mexico to shed light on this area of potential impact. This quantitative study examines how students (n = 180) at a Rural University in Quintana Roo perceive their different types of motivation, intrinsic and extrinsic, instrumental, and integrative and the attitudes for the language. The findings reveal a high degree of intrinsic and instrumental motivation and provide insights into the perceived attitudes for learning English. Finding ways to persist in action may lead to better comprehending the reasons for learning English.

Keywords: Attitudes for motivation, types of motivation, Extrinsic and Intrinsic motivation, instrumental and integrative motivation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 116
1701 Reducing Defects through Organizational Learning within a Housing Association Environment

Authors: T. Hopkin, S. Lu, P. Rogers, M. Sexton

Abstract:

Housing Associations (HAs) contribute circa 20% of the UK’s housing supply. HAs are however under increasing pressure as a result of funding cuts and rent reductions. Due to the increased pressure, a number of processes are currently being reviewed by HAs, especially how they manage and learn from defects. Learning from defects is considered a useful approach to achieving defect reduction within the UK housebuilding industry. This paper contributes to our understanding of how HAs learn from defects by undertaking an initial round table discussion with key HA stakeholders as part of an ongoing collaborative research project with the National House Building Council (NHBC) to better understand how house builders and HAs learn from defects to reduce their prevalence. The initial discussion shows that defect information runs through a number of groups, both internal and external of a HA during both the defects management process and organizational learning (OL) process. Furthermore, HAs are reliant on capturing and recording defect data as the foundation for the OL process. During the OL process defect data analysis is the primary enabler to recognizing a need for a change to organizational routines. When a need for change has been recognized, new options are typically pursued to design out defects via updates to a HAs Employer’s Requirements. Proposed solutions are selected by a review board and committed to organizational routine. After implementing a change, both structured and unstructured feedback is sought to establish the change’s success. The findings from the HA discussion demonstrates that OL can achieve defect reduction within the house building sector in the UK. The paper concludes by outlining a potential ‘learning from defects model’ for the housebuilding industry as well as describing future work.

Keywords: Defects, new homes, housing associations, organizational learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
1700 Integrating Generic Skills into Disciplinary Curricula

Authors: Sitalakshmi Venkatraman, Fiona Wahr, Anthony de Souza-Daw, Samuel Kaspi

Abstract:

There is a growing emphasis on generic skills in higher education to match the changing skill-set requirements of the labour market. However, researchers and policy makers have not arrived at a consensus on the generic skills that actually contribute towards workplace employability and performance that complement and/or underpin discipline-specific graduate attributes. In order to strengthen the qualifications framework, a range of ‘generic’ learning outcomes have been considered for students undergoing higher education programs and among them it is necessary to have the fundamental generic skills such as literacy and numeracy at a level appropriate to the qualification type. This warrants for curriculum design approaches to contextualise the form and scope of these fundamental generic skills for supporting both students’ learning engagement in the course, as well as the graduate attributes required for employability and to progress within their chosen profession. Little research is reported in integrating such generic skills into discipline-specific learning outcomes. This paper explores the literature of the generic skills required for graduates from the discipline of Information Technology (IT) in relation to an Australian higher education institution. The paper presents the rationale of a proposed Bachelor of IT curriculum designed to contextualize the learning of these generic skills within the students’ discipline studies.

Keywords: Curriculum, employability, generic skills, graduate attributes, higher education, information technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1699 Fairness in Tech-Driven Assessment: Strategies to Safeguard Academic Integrity and Security in Virtual Environment

Authors: B. Ferdousi, J. Bari

Abstract:

Advanced technology can provide vital tools to promote authentic, meaningful, and efficient assessments that measure students' achievement of learning objectives in higher education. However, it also brings several challenges in the learning process. This literature review-based paper describes the challenges in ensuring academic integrity and cybersecurity when students' knowledge and performance are assessed in a digital environment. The paper also reviews the strategies that can be implemented to address these challenges. Using students' authentication and authorship verification of their classwork, designing and developing e-assessments, technology accessibility and instructor training are probable solutions to address these challenges. Given the increasing adoption of digital technology in assessing students' effective learning achievement, this paper will help enhance knowledge and in-depth understanding of measures needed in using technology in academic assessment.

Keywords: Fairness, cybersecurity, e-authentication, academic integrity, e-assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74
1698 Detection of Cyberattacks on the Metaverse Based on First-Order Logic

Authors: Sulaiman Al Amro

Abstract:

There are currently considerable challenges concerning data security and privacy, particularly in relation to modern technologies. This includes the virtual world known as the Metaverse, which consists of a virtual space that integrates various technologies, and therefore susceptible to cyber threats such as malware, phishing, and identity theft. This has led recent studies to propose the development of Metaverse forensic frameworks and the integration of advanced technologies, including machine learning for intrusion detection and security. In this context, the application of first-order logic offers a formal and systematic approach to defining the conditions of cyberattacks, thereby contributing to the development of effective detection mechanisms. In addition, formalizing the rules and patterns of cyber threats has the potential to enhance the overall security posture of the Metaverse and thus the integrity and safety of this virtual environment. The current paper focuses on the primary actions employed by avatars for potential attacks, including Interval Temporal Logic (ITL) and behavior-based detection to detect an avatar’s abnormal activities within the Metaverse. The research established that the proposed framework attained an accuracy of 92.307%, resulting in the experimental results demonstrating the efficacy of ITL, including its superior performance in addressing the threats posed by avatars within the Metaverse domain.

Keywords: Cyberattacks, detection, first-order logic, Metaverse, privacy, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67
1697 The Implementation of Word Study Wall in an Online English Word Memorization Class

Authors: Yidan Shao

Abstract:

With the advancement of the economy, technology promotes online teaching, and learning has become one of the common features in the educational field. Meanwhile, the dramatic expansion of the online environment provides opportunities for more learners, including second language learners. A greater command of vocabulary improves students’ learning capacity, and word acquisition and development play a critical role in learning. Furthermore, the Word Wall is an effective tool to improve students’ knowledge of words, which works for a wide range of age groups. Therefore, this study is going to use the Word Wall as an intervention to examine whether it can bring some memorization changes in an online English language class for a second language learner based on the word morphology method. The participant will take ten courses in the experiment as it plans. The findings show that the Word Wall activity plays a slight role in improving word memorizing, but it does affect instant memorization. If longer periods and more comprehensive designs of research can be applied, it is expected to have more value.

Keywords: Second language acquisition, word morphology, word memorization, the Word Wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276
1696 A Structural Support Vector Machine Approach for Biometric Recognition

Authors: Vishal Awasthi, Atul Kumar Agnihotri

Abstract:

Face is a non-intrusive strong biometrics for identification of original and dummy facial by different artificial means. Face recognition is extremely important in the contexts of computer vision, psychology, surveillance, pattern recognition, neural network, content based video processing. The availability of a widespread face database is crucial to test the performance of these face recognition algorithms. The openly available face databases include face images with a wide range of poses, illumination, gestures and face occlusions but there is no dummy face database accessible in public domain. This paper presents a face detection algorithm based on the image segmentation in terms of distance from a fixed point and template matching methods. This proposed work is having the most appropriate number of nodal points resulting in most appropriate outcomes in terms of face recognition and detection. The time taken to identify and extract distinctive facial features is improved in the range of 90 to 110 sec. with the increment of efficiency by 3%.

Keywords: Face recognition, Principal Component Analysis, PCA, Linear Discriminant Analysis, LDA, Improved Support Vector Machine, iSVM, elastic bunch mapping technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 493
1695 Study on the Characteristics of the Measurement System for pH Array Sensors

Authors: Jung-Chuan Chou, Wei-Lun Hsia

Abstract:

A measurement system for pH array sensors is introduced to increase accuracy, and decrease non-ideal effects successfully. An array readout circuit reads eight potentiometric signals at the same time, and obtains an average value. The deviation value or the extreme value is counteracted and the output voltage is a relatively stable value. The errors of measuring pH buffer solutions are decreased obviously with this measurement system, and the non-ideal effects, drift and hysteresis, are lowered to 1.638mV/hr and 1.118mV, respectively. The efficiency and stability are better than single sensor. The whole sensing characteristics are improved.

Keywords: Array sensors, measurement system, non-ideal effects, pH sensor, readout circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1694 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms

Authors: S. Umarani, D. Sharmila

Abstract:

A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).

Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
1693 Knowledge Representation and Retrieval in Design Project Memory

Authors: Smain M. Bekhti, Nada T. Matta

Abstract:

Knowledge sharing in general and the contextual access to knowledge in particular, still represent a key challenge in the knowledge management framework. Researchers on semantic web and human machine interface study techniques to enhance this access. For instance, in semantic web, the information retrieval is based on domain ontology. In human machine interface, keeping track of user's activity provides some elements of the context that can guide the access to information. We suggest an approach based on these two key guidelines, whilst avoiding some of their weaknesses. The approach permits a representation of both the context and the design rationale of a project for an efficient access to knowledge. In fact, the method consists of an information retrieval environment that, in the one hand, can infer knowledge, modeled as a semantic network, and on the other hand, is based on the context and the objectives of a specific activity (the design). The environment we defined can also be used to gather similar project elements in order to build classifications of tasks, problems, arguments, etc. produced in a company. These classifications can show the evolution of design strategies in the company.

Keywords: Project Memory, Knowledge re-use, Design rationale, Knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
1692 Innovation and Technologies Synthesis of Various Components: A Contribution to the Precision Irrigation Development for Open-Field Fruit Orchards

Authors: P. Chatrabhuti, S. Visessri, T. Charinpanitkul

Abstract:

Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. As a result of this review, the different technologies have limitations and may only be suitable for specific orchards or spatial settings. The current technologies are readily available in a range of options, from affordable controllers to high-performance systems that are both reliable and precise. Furthermore, the future prospects for incorporating artificial intelligence and machine learning techniques hold promise for advancing autonomous irrigation systems.

Keywords: Innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26
1691 A Real-Time Specific Weed Recognition System Using Statistical Methods

Authors: Imran Ahmed, Muhammad Islam, Syed Inayat Ali Shah, Awais Adnan

Abstract:

The identification and classification of weeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in shape, color and texture, weed control system is feasible. The goal of this paper is to build a real-time, machine vision weed control system that can detect weed locations. In order to accomplish this objective, a real-time robotic system is developed to identify and locate outdoor plants using machine vision technology and pattern recognition. The algorithm is developed to classify images into broad and narrow class for real-time selective herbicide application. The developed algorithm has been tested on weeds at various locations, which have shown that the algorithm to be very effectiveness in weed identification. Further the results show a very reliable performance on weeds under varying field conditions. The analysis of the results shows over 90 percent classification accuracy over 140 sample images (broad and narrow) with 70 samples from each category of weeds.

Keywords: Weed detection, Image Processing, real-timerecognition, Standard Deviation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
1690 The Effect of Facial Expressions on Students in Virtual Educational Environments

Authors: G. Theonas, D. Hobbs, D. Rigas

Abstract:

The scope of this research was to study the relation between the facial expressions of three lecturers in a real academic lecture theatre and the reactions of the students to those expressions. The first experiment aimed to investigate the effectiveness of a virtual lecturer-s expressions on the students- learning outcome in a virtual pedagogical environment. The second experiment studied the effectiveness of a single facial expression, i.e. the smile, on the students- performance. Both experiments involved virtual lectures, with virtual lecturers teaching real students. The results suggest that the students performed better by 86%, in the lectures where the lecturer performed facial expressions compared to the results of the lectures that did not use facial expressions. However, when simple or basic information was used, the facial expressions of the virtual lecturer had no substantial effect on the students- learning outcome. Finally, the appropriate use of smiles increased the interest of the students and consequently their performance.

Keywords: emotion, facial expression, smile, virtual educational environment, virtual learning, virtual lecturer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
1689 Combining Bagging and Additive Regression

Authors: Sotiris B. Kotsiantis

Abstract:

Bagging and boosting are among the most popular re-sampling ensemble methods that generate and combine a diversity of regression models using the same learning algorithm as base-learner. Boosting algorithms are considered stronger than bagging on noise-free data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using an averaging methodology of bagging and boosting ensembles with 10 sub-learners in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-learners on standard benchmark datasets and the proposed ensemble gave better accuracy.

Keywords: Regressors, statistical learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
1688 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective

Authors: Yesuselvi Manickam, Tan Soon Chin

Abstract:

Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.

Keywords: Employers perspective, internship, structured learning, student’s performances.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
1687 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
1686 Advance in Monitoring and Process Control of Surface Roughness

Authors: Somkiat Tangjitsitcharoen, Siripong Damrongthaveesak

Abstract:

This paper presents an advance in monitoring and process control of surface roughness in CNC machine for the turning and milling processes. An integration of the in-process monitoring and process control of the surface roughness is proposed and developed during the machining process by using the cutting force ratio. The previously developed surface roughness models for turning and milling processes of the author are adopted to predict the inprocess surface roughness, which consist of the cutting speed, the feed rate, the tool nose radius, the depth of cut, the rake angle, and the cutting force ratio. The cutting force ratios obtained from the turning and the milling are utilized to estimate the in-process surface roughness. The dynamometers are installed on the tool turret of CNC turning machine and the table of 5-axis machining center to monitor the cutting forces. The in-process control of the surface roughness has been developed and proposed to control the predicted surface roughness. It has been proved by the cutting tests that the proposed integration system of the in-process monitoring and the process control can be used to check the surface roughness during the cutting by utilizing the cutting force ratio.

Keywords: Turning, milling, monitoring, surface roughness, cutting force ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
1685 Analysis of Trend and Variability of Rainfall in the Mid-Mahanadi River Basin of Eastern India

Authors: Rabindra K. Panda, Gurjeet Singh

Abstract:

The major objective of this study was to analyze the trend and variability of rainfall in the middle Mahandi river basin located in eastern India. The trend of variation of extreme rainfall events has predominant effect on agricultural water management and extreme hydrological events such as floods and droughts. Mahanadi river basin is one of the major river basins of India having an area of 1,41,589 km2 and divided into three regions: Upper, middle and delta region. The middle region of Mahanadi river basin has an area of 48,700 km2 and it is mostly dominated by agricultural land, where agriculture is mostly rainfed. The study region has five Agro-climatic zones namely: East and South Eastern Coastal Plain, North Eastern Ghat, Western Undulating Zone, Western Central Table Land and Mid Central Table Land, which were numbered as zones 1 to 5 respectively for convenience in reporting. In the present study, analysis of variability and trends of annual, seasonal, and monthly rainfall was carried out, using the daily rainfall data collected from the Indian Meteorological Department (IMD) for 35 years (1979-2013) for the 5 agro-climatic zones. The long term variability of rainfall was investigated by evaluating the mean, standard deviation and coefficient of variation. The long term trend of rainfall was analyzed using the Mann-Kendall test on monthly, seasonal and annual time scales. It was found that there is a decreasing trend in the rainfall during the winter and pre monsoon seasons for zones 2, 3 and 4; whereas in the monsoon (rainy) season there is an increasing trend for zones 1, 4 and 5 with a level of significance ranging between 90-95%. On the other hand, the mean annual rainfall has an increasing trend at 99% significance level. The estimated seasonality index showed that the rainfall distribution is asymmetric and distributed over 3-4 months period. The study will help to understand the spatio-temporal variation of rainfall and to determine the correlation between the current rainfall trend and climate change scenario of the study region for multifarious use.

Keywords: Eastern India, long-term variability and trends, Mann-Kendall test, seasonality index, spatio-temporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
1684 Ethics, Identity and Organizational Learning –Challenges for South African Managers

Authors: Jacobus A. A. Lazenby

Abstract:

As a result of the ever-changing environment and the demands of rganisations- customers, it is important to recognise the importance of some important managerial challenges. It is the sincere belief that failure to meet these challenges, will ultimately contribute to inevitable problems for organisations. This recognition requires from managers and by implication organisations to be engaged in ethical behaviour, identity awareness and learning organisational behaviour. All these aspects actually reflect on the importance of intellectual capital as the competitive weapons for organisations in the future.

Keywords: Ethical behaviour, identity awareness, learningbehaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
1683 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
1682 Curriculum Based Measurement and Precision Teaching in Writing Empowerment Enhancement: Results from an Italian Learning Center

Authors: I. Pelizzoni, C. Cavallini, I. Salvaderi, F. Cavallini

Abstract:

We present the improvement in writing skills obtained by 94 participants (aged between six and 10 years) with special educational needs through a writing enhancement program based on fluency principles. The study was planned and conducted with a single-subject experimental plan for each of the participants, in order to confirm the results in the literature. These results were obtained using precision teaching (PT) methodology to increase the number of written graphemes per minute in the pre- and post-test, by curriculum based measurement (CBM). Results indicated an increase in the number of written graphemes for all participants. The average overall duration of the intervention is 144 minutes in five months of treatment. These considerations have been analyzed taking account of the complexity of the implementation of measurement systems in real operational contexts (an Italian learning center) and important aspects of replicability and cost-effectiveness of such interventions.

Keywords: Precision teaching, writing skills, CBM, Italian Learning Center.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
1681 The Formation of Motivational Sphere for Learning Activity under Conditions of Change of One of Its Leading Components

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses ways to implement a differentiated approach to developing academic motivation for mathematical studies which relies on defining the primary structural characteristics of motivation. The following characteristics are considered: features of realization of cognitive activity, meaningmaking characteristics, level of generalization and consistency of knowledge acquired by personal experience. The assessment of the present level of individual student understanding of each component of academic motivation is the basis for defining the relevant educational strategy for its further development.

Keywords: Learning activity, mathematics, motivation, student.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
1680 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis

Authors: Mohamed A. Mahfouz, M. A. Ismail

Abstract:

Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.

Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963