Search results for: data source.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8522

Search results for: data source.

7232 Emotions Triggered by Children’s Literature Images

Authors: A. Breda, C. Cruz

Abstract:

The role of images/illustrations in communicating meanings and triggering emotions assumes an increasingly relevant role in contemporary texts, regardless of the age group for which they are intended or the nature of the texts that host them. It is no coincidence that children's books are full of illustrations and that the image/text ratio decreases as the age group grows. The vast majority of children's books can be considered as multimodal texts containing text and images/illustrations, interacting with each other, to provide the young reader with a broader and more creative understanding of the book's narrative. This interaction is very diverse, ranging from images/illustrations that are not essential for understanding the storytelling to those that contribute significantly to the meaning of the story. Usually, these books are also read by adults, namely by parents, educators, and teachers who act as mediators between the book and the children, explaining aspects that are or seem to be too complex for the child's context. It should be noted that there are books labeled as children's books, that are clearly intended for both children and adults. In this work, following a qualitative and interpretative methodology based on written productions, participant observation, and field notes, we will describe the perceptions of future teachers of the 1st cycle of basic education, attending a master’s degree at a Portuguese university, about the role of the image in literary and non-literary texts, namely in mathematical texts, and how these can constitute precious resources for emotional regulation and for the design of creative didactic situations. The analysis of the collected data allowed us to obtain evidence regarding the evolution of the participants' perception regarding the crucial role of images in children's literature, not only as an emotional regulator for young readers but also as a creative source for the design of meaningful didactical situations, crossing other scientific areas, other than the mother tongue, namely mathematics.

Keywords: Children’s literature, emotions, multimodal texts, soft skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199
7231 Light Tracking Fault Tolerant Control System

Authors: J. Florescu, T. Vinay, L. Wang

Abstract:

A fault detection and identification (FDI) technique is presented to create a fault tolerant control system (FTC). The fault detection is achieved by monitoring the position of the light source using an array of light sensors. When a decision is made about the presence of a fault an identification process is initiated to locate the faulty component and reconfigure the controller signals. The signals provided by the sensors are predictable; therefore the existence of a fault is easily identified. Identification of the faulty sensor is based on the dynamics of the frame. The technique is not restricted to a particular type of controllers and the results show consistency.

Keywords: algorithm, detection and diagnostic, fault-tolerantcontrol, fault detection and identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
7230 Survey on Image Mining Using Genetic Algorithm

Authors: Jyoti Dua

Abstract:

One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: “Image Mining”. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.

Keywords: Image Mining, Data Mining, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2445
7229 Landscape Visual Classification Using Land use and Contour Data for Tourism and Planning Decision Making in Cameron Highlands District

Authors: Hosni, N., Shinozaki, M.

Abstract:

Cameron Highlands is known for upland tourism area with vast natural wealth, mountainous landscape endowed with rich diverse species as well as people traditions and cultures. With these various resources, CH possesses an interesting visual and panorama that can be offered to the tourist. However this benefit may not be utilized without obtaining the understanding of existing landscape structure and visual. Given a limited data, this paper attempts to classify landscape visual of Cameron Highlands using land use and contour data. Visual points of view were determined from the given tourist attraction points in the CH Local Plan 2003-2015. The result shows landscape visual and structure categories offered in the study area. The result can be used for further analysis to determine the best alternative tourist trails for tourism planning and decision making using readily available data.

Keywords: Visibility, landscape visual, urban planning, GIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
7228 Sampling of Variables in Discrete-Event Simulation using the Example of Inventory Evolutions in Job-Shop-Systems Based on Deterministic and Non-Deterministic Data

Authors: Bernd Scholz-Reiter, Christian Toonen, Jan Topi Tervo, Dennis Lappe

Abstract:

Time series analysis often requires data that represents the evolution of an observed variable in equidistant time steps. In order to collect this data sampling is applied. While continuous signals may be sampled, analyzed and reconstructed applying Shannon-s sampling theorem, time-discrete signals have to be dealt with differently. In this article we consider the discrete-event simulation (DES) of job-shop-systems and study the effects of different sampling rates on data quality regarding completeness and accuracy of reconstructed inventory evolutions. At this we discuss deterministic as well as non-deterministic behavior of system variables. Error curves are deployed to illustrate and discuss the sampling rate-s impact and to derive recommendations for its wellfounded choice.

Keywords: discrete-event simulation, job-shop-system, sampling rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
7227 School Design and Energy Efficiency

Authors: B. Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only need heating during the winter. The space hating energy is the major portion of winter school energy consumption and the winter energy consumption is major portion of annual school energy consumption. School building thermal design should focus on the winter thermal performance for reducing the space heating energy. A number of Auckland schools- design data and energy consumption data are used for this study. This pilot study investigates the relationships between their energy consumption data and school building design data to improve future school design for energy efficiency.

Keywords: Building energy efficiency, building thermal performance, school building design, school energy consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
7226 A Thought on Exotic Statistical Distributions

Authors: R K Sinha

Abstract:

The statistical distributions are modeled in explaining nature of various types of data sets. Although these distributions are mostly uni-modal, it is quite common to see multiple modes in the observed distribution of the underlying variables, which make the precise modeling unrealistic. The observed data do not exhibit smoothness not necessarily due to randomness, but could also be due to non-randomness resulting in zigzag curves, oscillations, humps etc. The present paper argues that trigonometric functions, which have not been used in probability functions of distributions so far, have the potential to take care of this, if incorporated in the distribution appropriately. A simple distribution (named as, Sinoform Distribution), involving trigonometric functions, is illustrated in the paper with a data set. The importance of trigonometric functions is demonstrated in the paper, which have the characteristics to make statistical distributions exotic. It is possible to have multiple modes, oscillations and zigzag curves in the density, which could be suitable to explain the underlying nature of select data set.

Keywords: Exotic Statistical Distributions, Kurtosis, Mixture Distributions, Multi-modal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
7225 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014

Authors: Alexiou Dimitra, Fragkaki Maria

Abstract:

The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.

Keywords: Multiple factorial correspondence analysis, principal component analysis, factor analysis, E.U.-28 countries, statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu statistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
7224 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
7223 Tests and Measurements of Image Acquisition Characteristics for Image Sensors

Authors: Seongsoo Lee, Jong-Bae Lee, Wookkang Lee, Duyen Hai Pham

Abstract:

In the image sensors, the acquired image often differs from the real image in luminance or chrominance due to fabrication defects or nonlinear characteristics, which often lead to pixel defects or sensor failure. Therefore, the image acquisition characteristics of image sensors should be measured and tested before they are mounted on the target product. In this paper, the standardized test and measurement methods of image sensors are introduced. It applies standard light source to the image sensor under test, and the characteristics of the acquired image is compared with ideal values.

Keywords: Image Sensor, Image Acquisition Characteristics, Defect, Failure, Standard, Test, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
7222 Water Saving in Arid Regions: Comparison of Innovative Techniques for Irrigation of Young Date Palms

Authors: R. Bourziza, A. Hammani, M. Kuper, A. Bouaziz

Abstract:

In oases, the surface water resources are becoming increasingly scarce and groundwater resources, which generally have a poor quality due to the high levels of salinity, are often overexploited. Water saving have therefore become imperative for better oases sustainability. If drip irrigation is currently recommended in Morocco for saving water and valuing, its use in the sub-desert areas does not keep water safe from high evaporation rates. An alternative to this system would be the use of subsurface drip irrigation. This technique is defined as an application of water under the soil surface through drippers, which deliver water at rates generally similar to surface drip irrigation. As subsurface drip irrigation is a recently introduced in Morocco, a better understanding of the infiltration process around a buried source, in local conditions, and its impact on plant growth is necessarily required. This study aims to contribute to improving the water use efficiency by testing the performance of subsurface irrigation system, especially in areas where water is a limited source. The objectives of this research are performance evaluation in arid conditions of the subsurface drip irrigation system for young date palms compared to the surface drip. In this context, an experimental test is installed at a farmer’s field in the area of Erfoud (Errachidia Province, southeastern Morocco), using the subsurface drip irrigation system in comparison with the classic drip system for young date palms. Flow measurement to calculate the uniformity of the application of water was done through two methods: a flow measurement of drippers above the surface and another one underground. The latter method has also helped us to estimate losses through evaporation for both irrigation techniques. In order to compare the effect of two irrigation modes, plants were identified for each type of irrigation to monitor certain agronomic parameters (cumulative numbers of palms and roots development). Experimentation referred to a distribution uniformity of about 88%; considered acceptable for subsurface drip irrigation while it is around 80% for the surface drip irrigation. The results also show an increase in root development and in the number of palm, as well as a substantial water savings due to lower evaporation losses compared to the classic drip irrigation. The results of this study showed that subsurface drip irrigation is an efficient technique, which allows sustainable irrigation in arid areas.

Keywords: Subsurface drip irrigation, Water conservation, Arid areas, Young date palms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3327
7221 Biodegradation of Carbazole By a Promising Gram-Negative Bacterium

Authors: G. B. Singh, S. Srivastava, N. Gupta

Abstract:

In the present work we report a gram negative bacterial isolate, from soil of a dye industry, with promising biorefining and bioremediation potential. This isolate (GBS.5) could utilize carbazole (nitrogen containing polycyclic aromatic hydrocarbon) as the sole source of nitrogen and carbon and utilize almost 98% of 3mM carbazole in 100 hours. The specific activity of our GBS.5 isolate for carbazole degradation at 30°C and pH 7.0 was found to be 11.36 μmol/min/g dry cell weight as compared to 10.4 μmol/min/g dry cell weight, the highest reported specific activity till date. The presence of car genes (the genes involved in denitrogenation of carbazole) was confirmed through PCR amplification.

Keywords: Biodenitrogenation, Biorefining, Carbazoledegradation, Crude oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
7220 The Analysis of Teacher Talk in "Learner-centered" Teaching Mode

Authors: Haiyan Wang

Abstract:

Being main teaching media and major source of comprehensive target language input, teacher talk plays an important role in learners' second-language acquisition. Under the trend of "learner-centered" teaching mode, some researchers think that the best teacher talk means less. But the author holds that, in Chinese second language classroom, it is not advisable to lay too much stress on the formal students' participation, which requires the teacher to say as little as possible and the student to say as much as possible. The emphasis should be put on how to raise teacher talk's quality.

Keywords: Comprehensive language input, "learner-centered" teaching mode, teacher talk, teacher talk's quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4194
7219 Electron-Impact Excitation of Kr 5s, 5p Levels

Authors: Alla A. Mityureva

Abstract:

The available data on the cross sections of electronimpact excitation of krypton 5s and 5p configuration levels out of the ground state are represented in convenient and compact form. The results are obtained by regression through all known published data related to this process.

Keywords: Cross section, electron excitation, krypton, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087
7218 Seamless Flow of Voluminous Data in High Speed Network without Congestion Using Feedback Mechanism

Authors: T.Sheela, Dr.J.Raja

Abstract:

Continuously growing needs for Internet applications that transmit massive amount of data have led to the emergence of high speed network. Data transfer must take place without any congestion and hence feedback parameters must be transferred from the receiver end to the sender end so as to restrict the sending rate in order to avoid congestion. Even though TCP tries to avoid congestion by restricting the sending rate and window size, it never announces the sender about the capacity of the data to be sent and also it reduces the window size by half at the time of congestion therefore resulting in the decrease of throughput, low utilization of the bandwidth and maximum delay. In this paper, XCP protocol is used and feedback parameters are calculated based on arrival rate, service rate, traffic rate and queue size and hence the receiver informs the sender about the throughput, capacity of the data to be sent and window size adjustment, resulting in no drastic decrease in window size, better increase in sending rate because of which there is a continuous flow of data without congestion. Therefore as a result of this, there is a maximum increase in throughput, high utilization of the bandwidth and minimum delay. The result of the proposed work is presented as a graph based on throughput, delay and window size. Thus in this paper, XCP protocol is well illustrated and the various parameters are thoroughly analyzed and adequately presented.

Keywords: Bandwidth-Delay Product, Congestion Control, Congestion Window, TCP/IP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
7217 Eco-Connectivity: Sustainable Practices in Telecom Networks Using Big Data

Authors: Tharunika Sridhar

Abstract:

This paper addresses sustainable eco-connectivity within the telecommunications sector studying its importance to tackle the contemporary challenges and data regulation issues. The paper also investigates the role of Big Data and its integration in this context, specific to telecom industry. One of the major focus areas in this paper is studying and examining the pathways explored, that are state-of-the-art ecological infrastructure solutions and sector-led measures derived from expert analyses and reviews. Additionally, the paper analyses critical factors involving cost-effective route planning, and the development of green telecommunications infrastructure that adds qualitative reasoning to the research idea. Furthermore, the study discusses in detail a potential green roadmap towards sustainability by exploring green routing software, eco-friendly infrastructure and other eco-focused initiatives. The paper is also directed at the special linguistic needs of the telecommunications sector by focusing on targeted select range of telecom environment.

Keywords: Big Data, telecom, sustainable telecom sector, telecom networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84
7216 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: Energy production, meteorological data, irradiance decomposition, solar photovoltaic system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 766
7215 Evaluating Performance of Quality-of-Service Routing in Large Networks

Authors: V. Narasimha Raghavan, M. Venkatesh, T. Peer Meera Labbai, Praveen Dwarakanath Prabhu

Abstract:

The performance and complexity of QoS routing depends on the complex interaction between a large set of parameters. This paper investigated the scaling properties of source-directed link-state routing in large core networks. The simulation results show that the routing algorithm, network topology, and link cost function each have a significant impact on the probability of successfully routing new connections. The experiments confirm and extend the findings of other studies, and also lend new insight designing efficient quality-of-service routing policies in large networks.

Keywords: QoS, Link-State Routing, Dijkstra, Path Selection, Path Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
7214 Towards the Creation of Adaptive Content from Web Resources in an E-Learning Platform to Learners Profiles

Authors: M. Chaoui, M-T. Laskri

Abstract:

The evolution of information and communication technology has made a very powerful support for the improvement of online learning platforms in creation of courses. This paper presents a study that attempts to explore new web architecture for creating an adaptive online learning system to profiles of learners, using the Web as a source for the automatic creation of courses for the online training platform. This architecture will reduce the time and decrease the effort performed by the drafters of the current e-learning platform, and direct adaptation of the Web content will greatly enrich the quality of online training courses.

Keywords: Web Content, e-Learning, Educational Content, LMS, Profiles of Learners

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
7213 Cloud Computing Cryptography "State-of-the-Art"

Authors: Omer K. Jasim, Safia Abbas, El-Sayed M. El-Horbaty, Abdel-Badeeh M. Salem

Abstract:

Cloud computing technology is very useful in present day to day life, it uses the internet and the central remote servers to provide and maintain data as well as applications. Such applications in turn can be used by the end users via the cloud communications without any installation. Moreover, the end users’ data files can be accessed and manipulated from any other computer using the internet services. Despite the flexibility of data and application accessing and usage that cloud computing environments provide, there are many questions still coming up on how to gain a trusted environment that protect data and applications in clouds from hackers and intruders. This paper surveys the “keys generation and management” mechanism and encryption/decryption algorithms used in cloud computing environments, we proposed new security architecture for cloud computing environment that considers the various security gaps as much as possible. A new cryptographic environment that implements quantum mechanics in order to gain more trusted with less computation cloud communications is given.

Keywords: Cloud Computing, Cloud Encryption Model, Quantum Key Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4094
7212 Deep iCrawl: An Intelligent Vision-Based Deep Web Crawler

Authors: R.Anita, V.Ganga Bharani, N.Nityanandam, Pradeep Kumar Sahoo

Abstract:

The explosive growth of World Wide Web has posed a challenging problem in extracting relevant data. Traditional web crawlers focus only on the surface web while the deep web keeps expanding behind the scene. Deep web pages are created dynamically as a result of queries posed to specific web databases. The structure of the deep web pages makes it impossible for traditional web crawlers to access deep web contents. This paper, Deep iCrawl, gives a novel and vision-based approach for extracting data from the deep web. Deep iCrawl splits the process into two phases. The first phase includes Query analysis and Query translation and the second covers vision-based extraction of data from the dynamically created deep web pages. There are several established approaches for the extraction of deep web pages but the proposed method aims at overcoming the inherent limitations of the former. This paper also aims at comparing the data items and presenting them in the required order.

Keywords: Crawler, Deep web, Web Database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
7211 Searchable Encryption in Cloud Storage

Authors: Ren-Junn Hwang, Chung-Chien Lu, Jain-Shing Wu

Abstract:

Cloud outsource storage is one of important services in cloud computing. Cloud users upload data to cloud servers to reduce the cost of managing data and maintaining hardware and software. To ensure data confidentiality, users can encrypt their files before uploading them to a cloud system. However, retrieving the target file from the encrypted files exactly is difficult for cloud server. This study proposes a protocol for performing multikeyword searches for encrypted cloud data by applying k-nearest neighbor technology. The protocol ranks the relevance scores of encrypted files and keywords, and prevents cloud servers from learning search keywords submitted by a cloud user. To reduce the costs of file transfer communication, the cloud server returns encrypted files in order of relevance. Moreover, when a cloud user inputs an incorrect keyword and the number of wrong alphabet does not exceed a given threshold; the user still can retrieve the target files from cloud server. In addition, the proposed scheme satisfies security requirements for outsourced data storage.

Keywords: Fault-tolerance search, multi-keywords search, outsource storage, ranked search, searchable encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3080
7210 Unstructured-Data Content Search Based on Optimized EEG Signal Processing and Multi-Objective Feature Extraction

Authors: Qais M. Yousef, Yasmeen A. Alshaer

Abstract:

Over the last few years, the amount of data available on the globe has been increased rapidly. This came up with the emergence of recent concepts, such as the big data and the Internet of Things, which have furnished a suitable solution for the availability of data all over the world. However, managing this massive amount of data remains a challenge due to their large verity of types and distribution. Therefore, locating the required file particularly from the first trial turned to be a not easy task, due to the large similarities of names for different files distributed on the web. Consequently, the accuracy and speed of search have been negatively affected. This work presents a method using Electroencephalography signals to locate the files based on their contents. Giving the concept of natural mind waves processing, this work analyses the mind wave signals of different people, analyzing them and extracting their most appropriate features using multi-objective metaheuristic algorithm, and then classifying them using artificial neural network to distinguish among files with similar names. The aim of this work is to provide the ability to find the files based on their contents using human thoughts only. Implementing this approach and testing it on real people proved its ability to find the desired files accurately within noticeably shorter time and retrieve them as a first choice for the user.

Keywords: Artificial intelligence, data contents search, human active memory, mind wave, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
7209 The Use of TV and the Internet in the Social Context

Authors: Khulood Miliany

Abstract:

This study examines the media habits of young people in Saudi Arabia, in particular their use of the Internet and television in the domestic sphere, and how use of the Internet impacts upon other activities. In order to address the research questions, focus group interviews were conducted with Saudi university students. The study found that television has become a central part of social life within the household where television represents a main source for family time, particularly in Ramadan while the Internet is a solitary activity where it is used in more private spaces. Furthermore, Saudi females were also more likely to have their Internet access monitored and circumscribed by family members, with parents controlling the location and the amount of time spent using the Internet.

Keywords: Domestication of Technology. Internet, Social context, Television, Young people.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
7208 A Modified AES Based Algorithm for Image Encryption

Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5058
7207 Incremental Mining of Shocking Association Patterns

Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas

Abstract:

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
7206 Zero Inflated Strict Arcsine Regression Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.

Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
7205 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
7204 GA Based Optimal Feature Extraction Method for Functional Data Classification

Authors: Jun Wan, Zehua Chen, Yingwu Chen, Zhidong Bai

Abstract:

Classification is an interesting problem in functional data analysis (FDA), because many science and application problems end up with classification problems, such as recognition, prediction, control, decision making, management, etc. As the high dimension and high correlation in functional data (FD), it is a key problem to extract features from FD whereas keeping its global characters, which relates to the classification efficiency and precision to heavens. In this paper, a novel automatic method which combined Genetic Algorithm (GA) and classification algorithm to extract classification features is proposed. In this method, the optimal features and classification model are approached via evolutional study step by step. It is proved by theory analysis and experiment test that this method has advantages in improving classification efficiency, precision and robustness whereas using less features and the dimension of extracted classification features can be controlled.

Keywords: Classification, functional data, feature extraction, genetic algorithm, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
7203 An Experimental Study of a Self-Supervised Classifier Ensemble

Authors: Neamat El Gayar

Abstract:

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644