Search results for: WSNs (Wireless Sensor Nodes or Networks) RTS (RequestTo Send)
1630 Biometric Technology in Securing the Internet Using Large Neural Network Technology
Authors: B. Akhmetov, A. Doszhanova, A. Ivanov, T. Kartbayev, A. Malygin
Abstract:
The article examines the methods of protection of citizens' personal data on the Internet using biometric identity authentication technology. It`s celebrated their potential danger due to the threat of loss of base biometric templates. To eliminate the threat of compromised biometric templates is proposed to use neural networks large and extra-large sizes, which will on the one hand securely (Highly reliable) to authenticate a person by his biometrics, and on the other hand make biometrics a person is not available for observation and understanding. This article also describes in detail the transformation of personal biometric data access code. It`s formed the requirements for biometrics converter code for his work with the images of "Insider," "Stranger", all the "Strangers". It`s analyzed the effect of the dimension of neural networks on the quality of converters mystery of biometrics in access code.
Keywords: Biometric security technologies, Conversion of personal biometric data access code, Electronic signature, Large neural networks, quality of converters "Biometrics - the code", the Egovernment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861629 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification
Authors: Abdelhadi Lotfi, Abdelkader Benyettou
Abstract:
In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.
Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12401628 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks
Authors: Siliang Wang, Minghui Wang, Jun Hu
Abstract:
A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.Keywords: pruning method, stochastic, time-varying networks, optimal path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18601627 Architecture Based on Dynamic Graphs for the Dynamic Reconfiguration of Farms of Computers
Authors: Carmen Navarrete, Eloy Anguiano
Abstract:
In the last years, the computers have increased their capacity of calculus and networks, for the interconnection of these machines. The networks have been improved until obtaining the actual high rates of data transferring. The programs that nowadays try to take advantage of these new technologies cannot be written using the traditional techniques of programming, since most of the algorithms were designed for being executed in an only processor,in a nonconcurrent form instead of being executed concurrently ina set of processors working and communicating through a network.This paper aims to present the ongoing development of a new system for the reconfiguration of grouping of computers, taking into account these new technologies.
Keywords: Dynamic network topology, resource and task allocation, parallel computing, heterogeneous computing, dynamic reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13701626 QoS Management in the Future Internet
Authors: S. Rao, S. Khavtasi, C. Chassot, N. Van Wambeke, F. Armando, S. P. Romano, T. Castaldi
Abstract:
The talks about technological convergence had been around for almost twenty years. Today Internet made it possible. And this is not only technical evolution. The way it changed our lives reflected in variety of applications, services and technologies used in day-to-day life. Such benefits imposed even more requirements on heterogeneous and unreliable IP networks. Current paper outlines QoS management system developed in the NetQoS [1] project. It describes an overall architecture of management system for heterogeneous networks and proposes automated multi-layer QoS management. Paper focuses on the structure of the most crucial modules of the system that enable autonomous and multi-layer provisioning and dynamic adaptation.Keywords: Automated QoS management, multi-layerprovisioning and adaptation, QoS, QoE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14871625 Water Demand Prediction for Touristic Mecca City in Saudi Arabia using Neural Networks
Authors: Abdel Hamid Ajbar, Emad Ali
Abstract:
Saudi Arabia is an arid country which depends on costly desalination plants to satisfy the growing residential water demand. Prediction of water demand is usually a challenging task because the forecast model should consider variations in economic progress, climate conditions and population growth. The task is further complicated knowing that Mecca city is visited regularly by large numbers during specific months in the year due to religious occasions. In this paper, a neural networks model is proposed to handle the prediction of the monthly and yearly water demand for Mecca city, Saudi Arabia. The proposed model will be developed based on historic records of water production and estimated visitors- distribution. The driving variables for the model include annuallyvarying variables such as household income, household density, and city population, and monthly-varying variables such as expected number of visitors each month and maximum monthly temperature.Keywords: Water demand forecast; Neural Networks model; water resources management; Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18231624 Task Planning for Service Robots with Limited Feedback
Authors: Chung-Woon Park, Jungwoo Lee, Jong-Tae Lim
Abstract:
In this paper, we propose a novel limited feedback scheme for task planning with service robots. Instead of sending the full service robot state information for the task planning, the proposed scheme send the best-M indices of service robots with a indicator. With the indicator, the proposed scheme significantly reduces the communication overhead for task planning as well as mitigates the system performance degradation in terms of the utility. In addition, we analyze the system performance of the proposed scheme and compare the proposed scheme with the other schemes.
Keywords: Task Planning, Service Robots, Limited Feedback, Scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12911623 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network
Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun
Abstract:
Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22461622 Existence and Exponential Stability of Almost Periodic Solution for Recurrent Neural Networks on Time Scales
Abstract:
In this paper, a class of recurrent neural networks (RNNs) with variable delays are studied on almost periodic time scales, some sufficient conditions are established for the existence and global exponential stability of the almost periodic solution. These results have important leading significance in designs and applications of RNNs. Finally, two examples and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.
Keywords: Recurrent neural network, Almost periodic solution, Global exponential stability, Time scale.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14171621 Comparison of Different Types of Sources of Traffic Using SFQ Scheduling Discipline
Authors: Alejandro Gomez Suarez, H. Srikanth Kamath
Abstract:
In this paper, SFQ (Start Time Fair Queuing) algorithm is analyzed when this is applied in computer networks to know what kind of behavior the traffic in the net has when different data sources are managed by the scheduler. Using the NS2 software the computer networks were simulated to be able to get the graphs showing the performance of the scheduler. Different traffic sources were introduced in the scripts, trying to establish the real scenario. Finally the results were that depending on the data source, the traffic can be affected in different levels, when Constant Bite Rate is applied, the scheduler ensures a constant level of data sent and received, but the truth is that in the real life it is impossible to ensure a level that resists the changes in work load. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21441620 Identification of Coauthors in Scientific Database
Authors: Thiago M. R Dias, Gray F. Moita
Abstract:
The analysis of scientific collaboration networks has contributed significantly to improving the understanding of how does the process of collaboration between researchers and also to understand how the evolution of scientific production of researchers or research groups occurs. However, the identification of collaborations in large scientific databases is not a trivial task given the high computational cost of the methods commonly used. This paper proposes a method for identifying collaboration in large data base of curriculum researchers. The proposed method has low computational cost with satisfactory results, proving to be an interesting alternative for the modeling and characterization of large scientific collaboration networks.
Keywords: Extraction and data integration, Information Retrieval, Scientific Collaboration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17161619 Using A Hybrid Algorithm to Improve the Quality of Services in Multicast Routing Problem
Authors: Mohammad Reza Karami Nejad
Abstract:
A hybrid learning automata-genetic algorithm (HLGA) is proposed to solve QoS routing optimization problem of next generation networks. The algorithm complements the advantages of the learning Automato Algorithm(LA) and Genetic Algorithm(GA). It firstly uses the good global search capability of LA to generate initial population needed by GA, then it uses GA to improve the Quality of Service(QoS) and acquiring the optimization tree through new algorithms for crossover and mutation operators which are an NP-Complete problem. In the proposed algorithm, the connectivity matrix of edges is used for genotype representation. Some novel heuristics are also proposed for mutation, crossover, and creation of random individuals. We evaluate the performance and efficiency of the proposed HLGA-based algorithm in comparison with other existing heuristic and GA-based algorithms by the result of simulation. Simulation results demonstrate that this paper proposed algorithm not only has the fast calculating speed and high accuracy but also can improve the efficiency in Next Generation Networks QoS routing. The proposed algorithm has overcome all of the previous algorithms in the literature.
Keywords: Routing, Quality of Service, Multicaset, Learning Automata, Genetic, Next Generation Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421618 An Innovational Intermittent Algorithm in Networks-On-Chip (NOC)
Authors: Ahmad M. Shafiee, Mehrdad Montazeri, Mahdi Nikdast
Abstract:
Every day human life experiences new equipments more automatic and with more abilities. So the need for faster processors doesn-t seem to finish. Despite new architectures and higher frequencies, a single processor is not adequate for many applications. Parallel processing and networks are previous solutions for this problem. The new solution to put a network of resources on a chip is called NOC (network on a chip). The more usual topology for NOC is mesh topology. There are several routing algorithms suitable for this topology such as XY, fully adaptive, etc. In this paper we have suggested a new algorithm named Intermittent X, Y (IX/Y). We have developed the new algorithm in simulation environment to compare delay and power consumption with elders' algorithms.Keywords: Computer architecture, parallel computing, NOC, routing algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16851617 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling
Authors: Prof. Chokri SLIM
Abstract:
A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.
Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166921616 A Study of Cross Border Student in Hong Kong: The New Phenomenon of Cross Border Students which arise from Cross Border Birth
Authors: Nancy, Ling Sze Leung
Abstract:
The number of cross-border student between Hong Kong and mainland China is increasing due to an increase of cross-border marriage between Hong Kong and mainland China. Since the education system is different to the mainland China, the statue Since all the children who have the right of abode in Hong Kong entitle to have free education in Hong Kong, many of the cross-border family prefer to send the children back to Hong Kong for their education.Keywords: Birthright citizenship, Cross border birth, Cross border student, Hong Kong
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54031615 Optimal Document Archiving and Fast Information Retrieval
Authors: Hazem M. El-Bakry, Ahmed A. Mohammed
Abstract:
In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.Keywords: Information Storage and Retrieval, Electronic Archiving, Fast Information Detection, Cross Correlation, Frequency Domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15921614 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution
Authors: Hidehiko Okada
Abstract:
The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.
Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23151613 A Method for Quality Inspection of Motors by Detecting Abnormal Sound
Authors: Tadatsugu Kitamoto
Abstract:
Recently, a quality of motors is inspected by human ears. In this paper, I propose two systems using a method of speech recognition for automation of the inspection. The first system is based on a method of linear processing which uses K-means and Nearest Neighbor method, and the second is based on a method of non-linear processing which uses neural networks. I used motor sounds in these systems, and I successfully recognize 86.67% of motor sounds in the linear processing system and 97.78% in the non-linear processing system.Keywords: Acoustical diagnosis, Neural networks, K-means, Short-time Fourier transformation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051612 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kr. Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with specific focus on Infrared (IR) and Visible image (VI) fusion for various applications including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like Visible camera & IR Thermal Imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (IR) that may be reflected or self-emitted. A digital color camera captures the visible source image and a thermal IR camera acquires the thermal source image. In this paper, some image fusion algorithms based upon Multi-Scale Transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, but they also make it hard to become deployed in system and applications that require real-time operation, high flexibility and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.
Keywords: Image fusion, IR thermal imager, multi-sensor, Multi-Scale Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4441611 Performance Analysis of MIMO Based Multi-User Cooperation Diversity Over Various Fading Channels
Authors: Zuhaib Ashfaq Khan, Imran Khan, Nandana Rajatheva
Abstract:
In this paper, hybrid FDMA-TDMA access technique in a cooperative distributive fashion introducing and implementing a modified protocol introduced in [1] is analyzed termed as Power and Cooperation Diversity Gain Protocol (PCDGP). A wireless network consists of two users terminal , two relays and a destination terminal equipped with two antennas. The relays are operating in amplify-and-forward (AF) mode with a fixed gain. Two operating modes: cooperation-gain mode and powergain mode are exploited from source terminals to relays, as it is working in a best channel selection scheme. Vertical BLAST (Bell Laboratories Layered Space Time) or V-BLAST with minimum mean square error (MMSE) nulling is used at the relays to perfectly detect the joint signals from multiple source terminals. The performance is analyzed using binary phase shift keying (BPSK) modulation scheme and investigated over independent and identical (i.i.d) Rayleigh, Ricean-K and Nakagami-m fading environments. Subsequently, simulation results show that the proposed scheme can provide better signal quality of uplink users in a cooperative communication system using hybrid FDMATDMA technique.
Keywords: Cooperation Diversity, Best Channel Selectionscheme, MIMO relay networks, V-BLAST, QRdecomposition, and MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20151610 Blockchain for IoT Security and Privacy in Healthcare Sector
Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab
Abstract:
The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain and how various stakeholders will interact with the system.
Keywords: Internet of Things, IoT, blockchain, data integrity, authentication, data privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4311609 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck
Abstract:
The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.
Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3481608 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8221607 Speech Recognition Using Scaly Neural Networks
Authors: Akram M. Othman, May H. Riadh
Abstract:
This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421606 Effect of Transmission Codes on Hybrid SC/MRC Diversity Reception MQAM system over Rayleigh Fading Channels
Authors: J.S. Ubhi, M.S. Patterh, T.S. Kamal
Abstract:
In this paper, the effect of transmission codes on the performance of coherent square M-ary quadrature amplitude modulation (CSMQAM) under hybrid selection/maximal-ratio combining (H-S/MRC) diversity is analysed. The fading channels are modeled as frequency non-selective slow independent and identically distributed Rayleigh fading channels corrupted by additive white Gaussian noise (AWGN). The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM under H-S/MRC diversity by plotting error probabilities versus average signal to noise ratio (SNR) for various values L and N in order to examine the improvement in the performance of the digital communications system as the number of selected diversity branches is increased. The results for no diversity, conventional SC and Lth order MRC schemes are also plotted for comparison. Closed form analytical results derived in this paper are sufficiently simple and therefore can be computed numerically without any approximations. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems over wireless fading channels.Keywords: Error probability, diversity reception, Rayleigh fading channels, wireless digital communications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17491605 Colorectal Cancer Screening by a CEACAM-6 Immunosensor
Authors: C. T. S. Ching, P. W. C hen, T. P. Sun, H. L. Shieh
Abstract:
The biomarker for colorectal cancer (CRC) is CEACAM-6 antigen (C6AG). Therefore, this study aims to develop a novel, simple and low-cost CEACAM-6 antigen immumosensor (C6AG-IMS), based on electrical impedance measurement, for precise determination of C6AG. A low-cost screen-printed graphite electrode was constructed and used as the sensor, with CEACAM-6 antibody (C6AB) immobilized on it. The procedures of sensor fabrication and antibody immobilization are simple and low-cost. Measurement of the electrical impedance at a definite frequency ranges (0.43 – 1.26 MHz) showed that the C6AG-IMS has an excellent linear (r2>0.9) response range (8.125 – 65 pg/mL), covering the normal physiological and pathological ranges of blood C6AG levels. Also, the C6AG-IMS has excellent reliability and validity, with the intraclass correlation coefficient being 0.97. In conclusion, a novel, simple, low-cost and reliable C6AG-IMS was designed and developed, being able to accurately determine blood C6AG levels in the range of pathological and normal physiological regions. The C6AG-IMS can provide a point-of-care and immediate screening results to the user at home.Keywords: Colorectal Cancer, Immunosensor, Electrical Impedance, CEACAM-6, Measurement, Point-of-Care
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16421604 110 MW Geothermal Power Plant Multiple Simulator, Using Wireless Technology
Authors: Guillermo Romero-Jiménez, Luis A. Jiménez-Fraustro, Mayolo Salinas-Camacho, Heriberto Avalos-Valenzuela
Abstract:
A geothermal power plant multiple simulator for operators training is presented. The simulator is designed to be installed in a wireless local area network and has a capacity to train one to six operators simultaneously, each one with an independent simulation session. The sessions must be supervised only by one instructor. The main parts of this multiple simulator are: instructor and operator-s stations. On the instructor station, the instructor controls the simulation sessions, establishes training exercises and supervises each power plant operator in individual way. This station is hosted in a Main Personal Computer (NS) and its main functions are: to set initial conditions, snapshots, malfunctions or faults, monitoring trends, and process and soft-panel diagrams. On the other hand the operators carry out their actions over the power plant simulated on the operator-s stations; each one is also hosted in a PC. The main software of instructor and operator-s stations are executed on the same NS and displayed in PCs through graphical Interactive Process Diagrams (IDP). The geothermal multiple simulator has been installed in the Geothermal Simulation Training Center (GSTC) of the Comisi├│n Federal de Electricidad, (Federal Commission of Electricity, CFE), Mexico, and is being utilized as a part of the training courses for geothermal power plant operators.Keywords: Geothermal power plant, multiple simulator, training operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20551603 Design of a Neural Networks Classifier for Face Detection
Authors: F. Smach, M. Atri, J. Mitéran, M. Abid
Abstract:
Face detection and recognition has many applications in a variety of fields such as security system, videoconferencing and identification. Face classification is currently implemented in software. A hardware implementation allows real-time processing, but has higher cost and time to-market. The objective of this work is to implement a classifier based on neural networks MLP (Multi-layer Perceptron) for face detection. The MLP is used to classify face and non-face patterns. The systm is described using C language on a P4 (2.4 Ghz) to extract weight values. Then a Hardware implementation is achieved using VHDL based Methodology. We target Xilinx FPGA as the implementation support.Keywords: Classification, Face Detection, FPGA Hardware description, MLP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22871602 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.
Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111601 Real-Time Recognition of Dynamic Hand Postures on a Neuromorphic System
Authors: Qian Liu, Steve Furber
Abstract:
To explore how the brain may recognise objects in its general,accurate and energy-efficient manner, this paper proposes the use of a neuromorphic hardware system formed from a Dynamic Video Sensor (DVS) silicon retina in concert with the SpiNNaker real-time Spiking Neural Network (SNN) simulator. As a first step in the exploration on this platform a recognition system for dynamic hand postures is developed, enabling the study of the methods used in the visual pathways of the brain. Inspired by the behaviours of the primary visual cortex, Convolutional Neural Networks (CNNs) are modelled using both linear perceptrons and spiking Leaky Integrate-and-Fire (LIF) neurons. In this study’s largest configuration using these approaches, a network of 74,210 neurons and 15,216,512 synapses is created and operated in real-time using 290 SpiNNaker processor cores in parallel and with 93.0% accuracy. A smaller network using only 1/10th of the resources is also created, again operating in real-time, and it is able to recognise the postures with an accuracy of around 86.4% - only 6.6% lower than the much larger system. The recognition rate of the smaller network developed on this neuromorphic system is sufficient for a successful hand posture recognition system, and demonstrates a much improved cost to performance trade-off in its approach.
Keywords: Spiking neural network (SNN), convolutional neural network (CNN), posture recognition, neuromorphic system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061