Search results for: learning effect
5350 Effect of Anionic and Non-ionic Surfactants on Activated Sludge Oxygen Uptake Rate and Nitrification
Authors: Maazuza Z. Othman, Liqiang Ding, Yi Jiao
Abstract:
A local wastewater treatment plant (WWTP) experiencing poor nitrification tracked down high level of surfactants in the plant-s influent and effluent. The aims of this project were to assess the potential inhibitory effect of surfactants on activated sludge processes. The effect of the presence of TergitolNP-9, TrigetolNP-7, Trigetol15-S-9, dodecylbenzene sulphonate (SDBS) and sodium dodecyl sulfate (SDS) on activated sludge oxygen uptake rate (OUR) and nitrification were assessed. The average concentration of non-ionic and anionic surfactants in the influent to the local WWTP were 7 and 8.7 mg/L, respectively. Removal of 67% to 90% of the non-ionic and 93-99% of the anionic surfactants tested were measured. All surfactants tested showed inhibitory effects both on OUR and nitrification. SDS incurred the lowest inhibition whereas SDBS and NP-9 caused severe inhibition to OUR and Nitrification. Activated sludge flocs sizes slightly decreased after 3 hours contact with the surfactant present in the test. The results obtained indicated that high concentrations of surfactants are likely to have an adverse effect on the performance of WWTPs utilizing activated sludge processes.Keywords: surfactants, activated sludge oxygen uptake rate (OUR), nitrification, anionic surfactants, non-ionic surfactants
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35025349 Component Based Framework for Authoring and Multimedia Training in Mathematics
Authors: Ion Smeureanu, Marian Dardala, Adriana Reveiu
Abstract:
The new programming technologies allow for the creation of components which can be automatically or manually assembled to reach a new experience in knowledge understanding and mastering or in getting skills for a specific knowledge area. The project proposes an interactive framework that permits the creation, combination and utilization of components that are specific to mathematical training in high schools. The main framework-s objectives are: • authoring lessons by the teacher or the students; all they need are simple operating skills for Equation Editor (or something similar, or Latex); the rest are just drag & drop operations, inserting data into a grid, or navigating through menus • allowing sonorous presentations of mathematical texts and solving hints (easier understood by the students) • offering graphical representations of a mathematical function edited in Equation • storing of learning objects in a database • storing of predefined lessons (efficient for expressions and commands, the rest being calculations; allows a high compression) • viewing and/or modifying predefined lessons, according to the curricula The whole thing is focused on a mathematical expressions minicompiler, storing the code that will be later used for different purposes (tables, graphics, and optimisations). Programming technologies used. A Visual C# .NET implementation is proposed. New and innovative digital learning objects for mathematics will be developed; they are capable to interpret, contextualize and react depending on the architecture where they are assembled.Keywords: Adaptor, automatic assembly learning component and user control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17045348 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5945347 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel
Authors: G. H. Senussi
Abstract:
The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32845346 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13645345 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22575344 Effect of Boric Acid on a-Hydroxy Acids Compounds in Thin Layer Chromatography
Authors: Elham Moniri, Homayon Ahmad Panahi, Ahmad Izadi, Mohamad Mehdi Parvin, Atyeh Rahimi
Abstract:
In this investigation Salicylic acid, Sulfosalicylic acid and Acetyl salicylic acid were chosen as a sample for thin layer chromatography (TLC) on silica gel plates. Bicarbonate buffer at different pH containing different amounts of boric acid was applied as mobile phase. Specific interaction of these substances with boric acid has effect on Rf in thin layer chromatography. Regular and similar trend was observed in variations of Rf for mentioned compounds in TLC by altering of percentages of boric acid in mobile phase in pH range of 8-10. Also effect of organic solvent, mixture of water/ organic solvent and organic solvent containing boric acid as mobile phase was studied.Keywords: Thin layer chromatography (TLC), Aspirin, Salicylic acid, Sulfosalycylic acid, Boric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23275343 Problems of Lifelong Education Course in Information and Communication Technology
Authors: Hisham Md Suhadi, Faaizah Shahbodin, Jamaluddin Hashim
Abstract:
The study is the way to identify the problems that occur in organizing short course’s lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed, there are the problems occur in organizing the short course for lifelong learning in ICT education.Keywords: Lifelong education, information and communication technology (ICT), short course, ICT education, courses administrative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18105342 Game based Learning to Enhance Cognitive and Physical Capabilities of Elderly People: Concepts and Requirements
Authors: Aurelie Aurilla Bechina Arntzen
Abstract:
The last decade has seen an early majority of people The last decade, the role of the of the information communication technologies has increased in improving the social and business life of people. Today, it is recognized that game could contribute to enhance virtual rehabilitation by better engaging patients. Our research study aims to develop a game based system enhancing cognitive and physical capabilities of elderly people. To this end, the project aims to develop a low cost hand held system based on existing game such as Wii, PSP, or Xbox. This paper discusses the concepts and requirements for developing such game for elderly people. Based on the requirement elicitation, we intend to develop a prototype related to sport and dance activities.Keywords: Elderly people, Game based learning system, Health systems, rehabilitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25175341 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6405340 Muscle: The Tactile Texture Designed for the Blind
Authors: Chantana Insra
Abstract:
The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.
Keywords: Blind, Tactile Texture, Muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18325339 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success
Authors: P. Paliadelis, A. Jones, G. Campbell
Abstract:
This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.
Keywords: Capability framework, human skills, work-integrated learning, credentialing, digital badging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 475338 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt
Authors: Lee P. Leon, Raymond Charles
Abstract:
This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.Keywords: Aggregate angularity, asphalt concrete, permanent deformation, rutting prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20845337 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27765336 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8785335 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.
Keywords: Business school, India, learning, social media, social networking, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14285334 The Effect of Geometry Dimensions on the Earthquake Response of the Finite Element Method
Authors: Morteza Jiryaei Sharahi
Abstract:
In this paper, the effect of width and height of the model on the earthquake response in the finite element method is discussed. For this purpose an earth dam as a soil structure under earthquake has been considered. Various dam-foundation models are analyzed by Plaxis, a finite element package for solving geotechnical problems. The results indicate considerable differences in the seismic responses.Keywords: Geometry dimensions, finite element, earthquake
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22165333 Computational Analysis of the Scaling Effects on the Performance of an Axial Compressor
Authors: Junting Xiang, Jörg Uwe Schlüter, Fei Duan
Abstract:
The miniaturization of gas turbines promises many advantages. Miniature gas turbines can be used for local power generation or the propulsion of small aircraft, such as UAV and MAV. However, experience shows that the miniaturization of conventional gas turbines, which are optimized at their current large size, leads to a substantial loss of efficiency and performance at smaller scales. This may be due to a number of factors, such as the Reynolds-number effect, the increased heat transfer, and manufacturing tolerances. In the present work, we focus on computational investigations of the Reynolds number effect and the wall heat transfer on the performance of axial compressor during its size change. The NASA stage 35 compressor is selected as the configuration in this study and computational fluid dynamics (CFD) is used to carry out the miniaturization process and simulations. We perform parameter studies on the effect of Reynolds number and wall thermal conditions. Our results indicate a decrease of efficiency, if the compressor is miniaturized based on its original geometry due to the increase of viscous effects. The increased heat transfer through wall has only a small effect and will actually benefit compressor performance based on our study.
Keywords: Axial compressor, CFD, heat transfer, miniature gas turbines, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32185332 A Comprehensive Evaluation of Supervised Machine Learning for the Phase Identification Problem
Authors: Brandon Foggo, Nanpeng Yu
Abstract:
Power distribution circuits undergo frequent network topology changes that are often left undocumented. As a result, the documentation of a circuit’s connectivity becomes inaccurate with time. The lack of reliable circuit connectivity information is one of the biggest obstacles to model, monitor, and control modern distribution systems. To enhance the reliability and efficiency of electric power distribution systems, the circuit’s connectivity information must be updated periodically. This paper focuses on one critical component of a distribution circuit’s topology - the secondary transformer to phase association. This topology component describes the set of phase lines that feed power to a given secondary transformer (and therefore a given group of power consumers). Finding the documentation of this component is call Phase Identification, and is typically performed with physical measurements. These measurements can take time lengths on the order of several months, but with supervised learning, the time length can be reduced significantly. This paper compares several such methods applied to Phase Identification for a large range of real distribution circuits, describes a method of training data selection, describes preprocessing steps unique to the Phase Identification problem, and ultimately describes a method which obtains high accuracy (> 96% in most cases, > 92% in the worst case) using only 5% of the measurements typically used for Phase Identification.Keywords: Distribution network, machine learning, network topology, phase identification, smart grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10755331 Dissertation by Portfolio - A Break from Traditional Approaches
Authors: Paul Crowther, Richard Hill
Abstract:
Much has been written about the difficulties students have with producing traditional dissertations. This includes both native English speakers (L1) and students with English as a second language (L2). The main emphasis of these papers has been on the structure of the dissertation, but in all cases, even when electronic versions are discussed, the dissertation is still in what most would regard as a traditional written form. Master of Science Degrees in computing disciplines require students to gain technical proficiency and apply their knowledge to a range of scenarios. The basis of this paper is that if a dissertation is a means of showing that such a student has met the criteria for a pass, which should be based on the learning outcomes of the dissertation module, does meeting those outcomes require a student to demonstrate their skills in a solely text based form, particularly in a highly technical research project? Could it be possible for a student to produce a series of related artifacts which form a cohesive package that meets the learning out comes of the dissertation?Keywords: Computing, Masters dissertation, thesis, portfolio
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13555330 Learning Outcomes Alignment across Engineering Core Courses
Authors: A. Bouabid, B. Bielenberg, S. Ainane, N. Pasha
Abstract:
In this paper, a team of faculty members of the Petroleum Institute in Abu Dhabi, UAE representing six different courses across General Engineering (ENGR), Communication (COMM), and Design (STPS) worked together to establish a clear developmental progression of learning outcomes and performance indicators for targeted knowledge, areas of competency, and skills for the first three semesters of the Bachelor of Sciences in Engineering curriculum. The sequences of courses studied in this project were ENGR/COMM, COMM/STPS, and ENGR/STPS. For each course’s nine areas of knowledge, competency, and skills, the research team reviewed the existing learning outcomes and related performance indicators with a focus on identifying linkages across disciplines as well as within the courses of a discipline. The team reviewed existing performance indicators for developmental progression from semester to semester for same discipline related courses (vertical alignment) and for different discipline courses within the same semester (horizontal alignment). The results of this work have led to recommendations for modifications of the initial indicators when incoherence was identified, and/or for new indicators based on best practices (identified through literature searches) when gaps were identified. It also led to recommendations for modifications of the level of emphasis within each course to ensure developmental progression. The exercise has led to a revised Sequence Performance Indicator Mapping for the knowledge, skills, and competencies across the six core courses.
Keywords: Curriculum alignment, horizontal and vertical progression, performance indicators, skill level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8385329 Effects of Competitive Strategies on Building Production Innovation in Construction Companies
Authors: Tugce Ercan
Abstract:
This research study aims to identify the impact of two factors –growth and competitive strategies- on a set of building production innovation strategies. It was conducted a questionery survey to collect data from construction professionals and it was asked them the importance level of predicted innovation strategies for corporate strategies. Multiple analysis of variance (MANOVA) was employed to see the main and interaction effects of corporate strategies on building innovation strategies. The results indicate that growth strategies such as entering in a new a market or new project types has a greater effect on innovation strategies rather than competitive strategies such as cost leadership or differentiation strategies. However the interaction effect of competitive strategies and growth strategies on innovation strategies is much bigger than the only effect of competitive strategies. It was also analyzed the descriptive statistics of innovation strategies for different competitive and growth strategy types.Keywords: competitive strategy, growth strategy, innovation, construction company, MANOVA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29705328 Comparative Study on the Effect of Substitution of Li and Mg Instead of Ca on Structural and Biological Behaviors of Silicate Bioactive Glass
Authors: Alireza Arab, Morteza Elsa, Amirhossein Moghanian
Abstract:
In this study, experiments were carried out to achieve a promising multifunctional and modified silicate based bioactive glass (BG). The main aim of the study was investigating the effect of lithium (Li) and magnesium (Mg) substitution, on in vitro bioactivity of substituted-58S BG. Moreover, it is noteworthy to state that modified BGs were synthesized in 60SiO2–(36-x)CaO–4P2O5–(x)Li2O and 60SiO2–(36-x)CaO–4P2O5–(x)MgO (where x = 0, 5, 10 mol.%) quaternary systems, by sol-gel method. Their performance was investigated through different aspects such as biocompatibility, antibacterial activity as well as their effect on alkaline phosphatase (ALP) activity, and proliferation of MC3T3 cells. The antibacterial efficiency was evaluated against methicillin-resistant Staphylococcus aureus bacteria. To do so, CaO was substituted with Li2O and MgO up to 10 mol % in 58S-BGs and then samples were immersed in simulated body fluid up to 14 days and then, characterized by X-ray diffraction, Fourier transform infrared spectroscopy, inductively coupled plasma atomic emission spectrometry, and scanning electron microscopy. Results indicated that this modification led to a retarding effect on in vitro hydroxyapatite (HA) formation due to the lower supersaturation degree for nucleation of HA compared with 58s-BG. Meanwhile, magnesium revealed further pronounced effect. The 3-(4,5 dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) and ALP analysis illustrated that substitutions of both Li2O and MgO, up to 5 mol %, had increasing effect on biocompatibility and stimulating proliferation of the pre-osteoblast MC3T3 cells in comparison to the control specimen. Regarding to bactericidal efficiency, the substitution of either Li or Mg for Ca in the 58s BG composition led to statistically significant difference in antibacterial behaviors of substituted-BGs. Meanwhile, the sample containing 5 mol % CaO/Li2O substitution (BG-5L) was selected as a multifunctional biomaterial in bone repair/regeneration due to the improved biocompatibility, enhanced ALP activity and antibacterial efficiency among all of the synthesized L-BGs and M-BGs.Keywords: Alkaline, alkaline earth, bioactivity, biomedical applications, sol-gel processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5695327 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15245326 Effect of Fill Material Density under Structures on Ground Motion Characteristics Due to Earthquake
Authors: Ahmed T. Farid, Khaled Z. Soliman
Abstract:
Due to limited areas and excessive cost of land for projects, backfilling process has become necessary. Also, backfilling will be done to overcome the un-leveling depths or raising levels of site construction, especially near the sea region. Therefore, backfilling soil materials used under the foundation of structures should be investigated regarding its effect on ground motion characteristics, especially at regions subjected to earthquakes. In this research, 60-meter thickness of sandy fill material was used above a fixed 240-meter of natural clayey soil underlying by rock formation to predict the modified ground motion characteristics effect at the foundation level. Comparison between the effect of using three different situations of fill material compaction on the recorded earthquake is studied, i.e. peak ground acceleration, time history, and spectra acceleration values. The three different densities of the compacted fill material used in the study were very loose, medium dense and very dense sand deposits, respectively. Shake computer program was used to perform this study. Strong earthquake records, with Peak Ground Acceleration (PGA) of 0.35 g, were used in the analysis. It was found that, higher compaction of fill material thickness has a significant effect on eliminating the earthquake ground motion properties at surface layer of fill material, near foundation level. It is recommended to consider the fill material characteristics in the design of foundations subjected to seismic motions. Future studies should be analyzed for different fill and natural soil deposits for different seismic conditions.
Keywords: Fill, material, density, compaction, earthquake, PGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8835325 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data
Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad
Abstract:
Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20555324 Caught in the Tractor Beam of Larger Influences: The Filtration of Innovation in Education Technology Design
Authors: Justin D. Olmanson, Fitsum F. Abebe, Valerie Jones, Eric Kyle, Lyrica Lucas, Katherine Robbins, Guieswende Rouamba, Xianquan Liu
Abstract:
While emerging technologies continue to emerge, research into their use in learning contexts often focuses on a subset of educational practices and ways of using technologies. In this study we begin to explore the extent to which educational designs are influenced by larger societal and education-related factors not usually explicitly considered when designing or identifying technology-supported education experiences for research study. We examine patterns within and between factors via a content analysis across ten years and 19 different journals of published peer-reviewed research on technology-supported writing. Our findings have implications for how researchers, designers, and educators approach technology-supported educational design within and beyond the field of writing and literacy.Keywords: Writing, emerging technology, learning, curriculum, pedagogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18345323 The Fiscal-Monetary Policy and Economic Growth in Algeria: VECM Approach
Authors: K. Bokreta, D. Benanaya
Abstract:
The objective of this study is to examine the relative effectiveness of monetary and fiscal policy in Algeria using the econometric modelling techniques of cointegration and vector error correction modelling to analyse and draw policy inferences. The chosen variables of fiscal policy are government expenditure and net taxes on products, while the effect of monetary policy is presented by the inflation rate and the official exchange rate. From the results, we find that in the long-run, the impact of government expenditures is positive, while the effect of taxes is negative on growth. Additionally, we find that the inflation rate is found to have little effect on GDP per capita but the impact of the exchange rate is insignificant. We conclude that fiscal policy is more powerful then monetary policy in promoting economic growth in Algeria.Keywords: Economic growth, fiscal policy, monetary policy, VECM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26565322 Study of Asphaltene Precipitation İnduced Formation Damage During CO2 Injection for a Malaysian Light Oil
Authors: Sima Sh. Alian, Abdul Aziz Omar, Ali F. Alta'ee, Irzie Hani
Abstract:
In this work, the precipitation of asphaltene from a Malaysian light oil reservoir was studies. A series of experiments were designed and carried out to examine the effect of CO2 injection on asphaltene precipitation. Different pressures of injections were used in Dynamic flooding experiment in order to investigate the effect of pressure versus injection pore volume of CO2. These dynamic displacement tests simulate reservoir condition. Results show that by increasing the pore volume of injected gas asphaltene precipitation will increases, also rise in injection pressure causes less precipitation. Sandstone core plug was used to represent reservoir formation during displacement test; therefore it made it possible to study the effect of present of asphaltene on formation. It is found out that the precipitated asphaltene can reduce permeability and porosity which is not favorable during oil production.
Keywords: Asphaltene, asphaltene precipitation, enhanced oil recovery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38525321 Effect of Cladding and Secondary Members on the Elastic Stability of Main Columns
Authors: Mohamed Massoud El Sadaawy, Ehab Hasan Ahmed Hasan Ali
Abstract:
The corrugated steel cladding used to cover most of steel buildings is considered as non-structural element. This research will reflect the effect of cladding as a shear diaphragm in increasing the normal elastic capacity of columns. This study is important because of the lack of information of the behavior of cladding and secondary members in various codes. Mathematical models for six different cases are carried by software. The results extracted from the program have been plotted showing the effects of different variables on the ultimate load of column. The variables considered in our research are the spacing between columns and the thickness of the corrugated sheet representing the sheet stiffness.Keywords: Stability of frames about minor axis, The effective length factor, Effect of secondary members on elastic buckling load column, The stiffness of sheeting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2798