Search results for: psycho-educational support.
1734 Modeling Methodologies for Optimization and Decision Support on Coastal Transport Information System (Co.Tr.I.S.)
Authors: Vassilios Moussas, Dimos N. Pantazis, Panagiotis Stratakis
Abstract:
The aim of this paper is to present the optimization methodology developed in the frame of a Coastal Transport Information System. The system will be used for the effective design of coastal transportation lines and incorporates subsystems that implement models, tools and techniques that may support the design of improved networks. The role of the optimization and decision subsystem is to provide the user with better and optimal scenarios that will best fulfill any constrains, goals or requirements posed. The complexity of the problem and the large number of parameters and objectives involved led to the adoption of an evolutionary method (Genetic Algorithms). The problem model and the subsystem structure are presented in detail, and, its support for simulation is also discussed.
Keywords: Coastal transport, modeling, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20041733 Decision Support System for Farm Management
Authors: Manpreet Singh, Parvinder Singh, Sumitter Bir Singh
Abstract:
The emergence of information technology has resulted in an ever-increasing demand to use computers for the efficient management and dissemination of information. Keeping in view the strong need of farmers to collect important and updated information for interactive, flexible and quick decision-making, a model of Decision Support System for Farm Management is developed. The paper discusses the use of Internet technology for the farmers to take decisions. A model is developed for the farmers to access online interactive and flexible information for their farm management. The workflow of the model is presented highlighting the information transfer between different modules.Keywords: Decision Support System, dissemination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30231732 Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan
Authors: Hiroaki Sumi, Kiichiro Hayashi
Abstract:
Now, the use of renewable energy power generation has been advanced. In this paper, we compared the usable amount of resource for photovoltaic power generation which was estimated using the NEDO formula and the expansion support policy of photovoltaic power generation which was researched using Internet in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of fitting the amount of resources. We think it would need to consider the suitability between the resources and policies.Keywords: Photovoltaic power generation, expansion support policy, amount of resources, Japan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12731731 Drainage Prediction for Dam using Fuzzy Support Vector Regression
Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee
Abstract:
The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.Keywords: Drainage Estimation, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12721730 Mining Educational Data to Support Students’ Major Selection
Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri
Abstract:
This paper aims to create the model for student in choosing an emphasized track of student majoring in computer science at Suan Sunandha Rajabhat University. The objective of this research is to develop the suggested system using data mining technique to analyze knowledge and conduct decision rules. Such relationships can be used to demonstrate the reasonableness of student choosing a track as well as to support his/her decision and the system is verified by experts in the field. The sampling is from student of computer science based on the system and the questionnaire to see the satisfaction. The system result is found to be satisfactory by both experts and student as well.
Keywords: Data mining technique, the decision support system, knowledge and decision rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32841729 Mathematical Modelling of Different Types of Body Support Surface for Pressure Ulcer Prevention
Authors: Mahbub C. Mishu, Venketesh N. Dubey, Tamas Hickish, Jonathan Cole
Abstract:
Pressure ulcer is a common problem for today’s healthcare industry. It occurs due to external load applied to the skin. Also when the subject is immobile for a longer period of time and there is continuous load applied to a particular area of human body, blood flow gets reduced and as a result pressure ulcer develops. Body support surface has a significant role in preventing ulceration so it is important to know the characteristics of support surface under loading conditions. In this paper we have presented mathematical models of different types of viscoelastic materials and also we have shown the validation of our simulation results with experiments.
Keywords: Pressure ulcer, viscoelastic material, mathematical model, experimental validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191728 Decision Support System for Solving Multi-Objective Routing Problem
Authors: Ismail El Gayar, Ossama Ismail, Yousri El Gamal
Abstract:
This paper presented a technique to solve one of the transportation problems that faces us in real life which is the Bus Scheduling Problem. Most of the countries using buses in schools, companies and traveling offices as an example to transfer multiple passengers from many places to specific place and vice versa. This transferring process can cost time and money, so we build a decision support system that can solve this problem. In this paper, a genetic algorithm with the shortest path technique is used to generate a competitive solution to other well-known techniques. It also presents a comparison between our solution and other solutions for this problem.
Keywords: Bus scheduling problem, decision support system, genetic algorithm, operation planning, shortest path, transportation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15321727 The PARADIGMA Approach for Cooperative Work in the Medical Domain
Authors: Antonio Di Leva, Carla Reyneri, Michele Sonnessa
Abstract:
PARADIGMA (PARticipative Approach to DIsease Global Management) is a pilot project which aims to develop and demonstrate an Internet based reference framework to share scientific resources and findings in the treatment of major diseases. PARADIGMA defines and disseminates a common methodology and optimised protocols (Clinical Pathways) to support service functions directed to patients and individuals on matters like prevention, posthospitalisation support and awareness. PARADIGMA will provide a platform of information services - user oriented and optimised against social, cultural and technological constraints - supporting the Health Care Global System of the Euro-Mediterranean Community in a continuous improvement process.Keywords: Decision Support Systems, Ontology, Healt Care, Clinical Pathway
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13951726 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System
Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain
Abstract:
This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161725 Event Monitoring Web Services for Heterogeneous Information Systems
Authors: Arne Koschel, Irina Astrova
Abstract:
Heterogeneity has to be taken into account when integrating a set of existing information sources into a distributed information system that are nowadays often based on Service- Oriented Architectures (SOA). This is also particularly applicable to distributed services such as event monitoring, which are useful in the context of Event Driven Architectures (EDA) and Complex Event Processing (CEP). Web services deal with this heterogeneity at a technical level, also providing little support for event processing. Our central thesis is that such a fully generic solution cannot provide complete support for event monitoring; instead, source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Our core result is the design of a configurable event monitoring (Web) service that allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.Keywords: ECA, CEP, SOA, and Web services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421724 Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image
Authors: Guo Xiuhua, Sun Tao, Wu Haifeng, He Wen, Liang Zhigang, Zhang Mengxia, Guo Aimin, Wang Wei
Abstract:
Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.Keywords: CT image, Curvelet transform, Small pulmonary nodules, Support vector machines, Texture extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27671723 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20201722 Network Mobility Support in Content-Centric Internet
Authors: Zhiwei Yan, Jong-Hyouk Lee, Yong-Jin Park, Xiaodong Lee
Abstract:
In this paper, we analyze NEtwork MObility (NEMO) supporting problems in Content-Centric Networking (CCN), and propose the CCN-NEMO which can well support the deployment of the content-centric paradigm in large-scale mobile Internet. The CCN-NEMO extends the signaling message of the basic CCN protocol, to support the mobility discovery and fast trigger of Interest re-issuing during the network mobility. Besides, the Mobile Router (MR) is extended to optimize the content searching and relaying in the local subnet. These features can be employed by the nested NEMO to maximize the advantages of content retrieving with CCN. Based on the analysis, we compare the performance on handover latency between the basic CCN and our proposed CCN-NEMO. The results show that our scheme can facilitate the content-retrieving in the NEMO scenario with improved performance.
Keywords: CCN, handover, NEMO, mobility management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15361721 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Authors: Khin May Win, Nan Sai Moon Kham
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421720 The Impact of the Knowledge-Sharing Factors on Improving Decision-Making at Sultan Qaboos University Libraries
Authors: Aseela Alhinaai, Suliman Abdullah, Adil Albusaidi
Abstract:
Knowledge has been considered an important asset in private and public organizations. It is utilized in the libraries sector to run different operations of technical services and administrative works. This study aims to identify the impact of the knowledge-sharing factors (technology, collaboration, management support) to improve decision-making at Sultan Qaboos University Libraries. This study conducted a quantitative method using a questionnaire instrument to measure the impact of technology, collaboration, and management support on knowledge sharing that lead to improved decision-making. The study population is the Sultan Qaboos University (SQU) libraries (Main Library, Medical Library, College of Economic and Political Science Library, and Art Library). The results showed that management support, collaboration, and technology use have a positive impact on the knowledge-sharing process, and knowledge sharing positively affects decision making process.
Keywords: Knowledge sharing, decision making, information technology, management support, corroboration, Sultan Qaboos University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611719 Buckling of Plates on Foundation with Different Types of Sides Support
Authors: Ali N. Suri, Ahmad A. Al-Makhlufi
Abstract:
In this paper the problem of buckling of plates on foundation of finite length and with different side support is studied.
The Finite Strip Method is used as tool for the analysis. This method uses finite strip elastic, foundation, and geometric matrices to build the assembly matrices for the whole structure, then after introducing boundary conditions at supports, the resulting reduced matrices is transformed into a standard Eigenvalue-Eigenvector problem. The solution of this problem will enable the determination of the buckling load, the associated buckling modes and the buckling wave length.
To carry out the buckling analysis starting from the elastic, foundation, and geometric stiffness matrices for each strip a computer program FORTRAN list is developed.
Since stiffness matrices are function of wave length of buckling, the computer program used an iteration procedure to find the critical buckling stress for each value of foundation modulus and for each boundary condition.
The results showed the use of elastic medium to support plates subject to axial load increase a great deal the buckling load, the results found are very close with those obtained by other analytical methods and experimental work.
The results also showed that foundation compensates the effect of the weakness of some types of constraint of side support and maximum benefit found for plate with one side simply supported the other free.
Keywords: Buckling, Finite Strip, Different Sides Support, Plates on Foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21481718 Development of Non-functional Requirements for Decision Support Systems
Authors: Kassem Saleh
Abstract:
Decision Support System (DSS) are interactive software systems that are built to assist the management of an organization in the decision making process when faced with nonroutine problems in a specific application domain. Non-functional requirements (NFRs) for a DSS deal with the desirable qualities and restrictions that the DSS functionalities must satisfy. Unlike the functional requirements, which are tangible functionalities provided by the DSS, NFRs are often hidden and transparent to DSS users but affect the quality of the provided functionalities. NFRs are often overlooked or added later to the system in an ad hoc manner, leading to a poor overall quality of the system. In this paper, we discuss the development of NFRs as part of the requirements engineering phase of the system development life cycle of DSSs. To help eliciting NFRs, we provide a comprehensive taxonomy of NFRs for DSSs.Keywords: Decision support system, Development, Elicitation, Non-functional requirements, Taxonomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24691717 The Effects of Perceived Organizational Support and Abusive Supervision on Employee’s Turnover Intention: The Mediating Roles of Psychological Contract and Emotional Exhaustion
Authors: Seung Yeon Son
Abstract:
Workers (especially, competent personnel) have been recognized as a core contributor to overall organizational effectiveness. Hence, verifying the determinants of turnover intention is one of the most important research issues. This study tested the influence of perceived organizational support and abusive supervision on employee’s turnover intention. In addition, mediating roles of psychological contract and emotional exhaustion were examined. Data from 255 Korean employees supported all hypotheses Implications for research and directions for future research are discussed.
Keywords: Abusive Supervision, Emotional Exhaustion, Perceived Organizational Support, Psychological Contract, Turnover Intention.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32191716 Resolving Dependency Ambiguity of Subordinate Clauses using Support Vector Machines
Authors: Sang-Soo Kim, Seong-Bae Park, Sang-Jo Lee
Abstract:
In this paper, we propose a method of resolving dependency ambiguities of Korean subordinate clauses based on Support Vector Machines (SVMs). Dependency analysis of clauses is well known to be one of the most difficult tasks in parsing sentences, especially in Korean. In order to solve this problem, we assume that the dependency relation of Korean subordinate clauses is the dependency relation among verb phrase, verb and endings in the clauses. As a result, this problem is represented as a binary classification task. In order to apply SVMs to this problem, we selected two kinds of features: static and dynamic features. The experimental results on STEP2000 corpus show that our system achieves the accuracy of 73.5%.Keywords: Dependency analysis, subordinate clauses, binaryclassification, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15971715 The Development of Decision Support System for Waste Management; a Review
Authors: M. S. Bani, Z. A. Rashid, K. H. K. Hamid, M. E. Harbawi, A.B.Alias, M. J. Aris
Abstract:
Most Decision Support Systems (DSS) for waste management (WM) constructed are not widely marketed and lack practical applications. This is due to the number of variables and complexity of the mathematical models which include the assumptions and constraints required in decision making. The approach made by many researchers in DSS modelling is to isolate a few key factors that have a significant influence to the DSS. This segmented approach does not provide a thorough understanding of the complex relationships of the many elements involved. The various elements in constructing the DSS must be integrated and optimized in order to produce a viable model that is marketable and has practical application. The DSS model used in assisting decision makers should be integrated with GIS, able to give robust prediction despite the inherent uncertainties of waste generation and the plethora of waste characteristics, and gives optimal allocation of waste stream for recycling, incineration, landfill and composting.Keywords: Review, decision support system, GIS and waste management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37481714 Developing OMS in IHL
Authors: Suzana Basaruddin, Haryani Haron, Siti Arpah Noodin
Abstract:
Managing knowledge of research is one way to ensure just in time information and knowledge to support research strategist and activities. Unfortunately researcher found the vital research knowledge in IHL (Institutions of Higher Learning) are scattered, unstructured and unorganized. Aiming on lay aside conceptual foundations for understanding and developing OMS (Organizational Memory System) to facilitate research in IHL, this research revealed ten factors contributed to the needs of research in the IHL and seven internal challenges of IHL in promoting research to their academic members. This study then suggested a comprehensive support of managing research knowledge using Organizational Memory System (OMS). Eight OMS characteristics to support research were identified. Finally the initial work in designing OMS was projected using knowledge taxonomy. All analysis is derived from pertinent research paper related to research in IHL and OMS. Further study can be conducted to validate and verify results presented.Keywords: corporate memory, Institutions of Higher Learning, organizational memory system, research
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21121713 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15441712 Analysis of Career Support Programs for Olympic Athletes in Japan with Fifteen Conceptual Categories
Authors: Miyako Oulevey, Kaori Tsutsui, David Lavallee, Naohiko Kohtake
Abstract:
The Japan Sports Agency has made efforts to unify several career support programs for Olympic athletes prior to the 2020 Tokyo Olympics. One of the programs, the Japan Olympic Committee Career Academy (JCA) was established in 2008 for Olympic athletes at their retirement. Research focusing on the service content of sport career support programs can help athletes experience a more positive transition. This study was designed to investigate the service content of the JCA program in relation to athletes’ career transition needs, including any differences of the reasons for retirement between Summer/Winter and Male/Female Olympic athletes, and to suggest the directions of how to unify the career support programs in Japan after hosting the Olympic Games using sport career transition models. Semi-structured interviews were conducted and analyzed the JCA director who started and managed the program since its inception, and a total of 15 conceptual categories were generated by the analysis. Four conceptual categories were in the result of “JCA situation”, 4 conceptual categories were in the result of “Athletes using JCA”, and 7 conceptual categories were in the result of “JCA current difficulties”. Through the analysis it was revealed that: the JCA had occupational supports for both current and retired Olympic athletes; other supports such as psychological support were unclear due to the lack of psychological professionals in JCA and the difficulties collaborating with other sports organizations; and there are differences in tendencies of visiting JCA, financial situations, and career choices depending on Summer/Winter and Male/Female athletes.
Keywords: Career support programs, causes of career termination, Olympic athlete, Olympic committee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8581711 Indonesian News Classification using Support Vector Machine
Authors: Dewi Y. Liliana, Agung Hardianto, M. Ridok
Abstract:
Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.Keywords: classification, Indonesian news, text processing, support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34891710 A Hybrid GMM/SVM System for Text Independent Speaker Identification
Authors: Rafik Djemili, Mouldi Bedda, Hocine Bourouba
Abstract:
This paper proposes a novel approach that combines statistical models and support vector machines. A hybrid scheme which appropriately incorporates the advantages of both the generative and discriminant model paradigms is described and evaluated. Support vector machines (SVMs) are trained to divide the whole speakers' space into small subsets of speakers within a hierarchical tree structure. During testing a speech token is assigned to its corresponding group and evaluation using gaussian mixture models (GMMs) is then processed. Experimental results show that the proposed method can significantly improve the performance of text independent speaker identification task. We report improvements of up to 50% reduction in identification error rate compared to the baseline statistical model.Keywords: Speaker identification, Gaussian mixture model (GMM), support vector machine (SVM), hybrid GMM/SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22371709 Research on Weakly Hard Real-Time Constraints and Their Boolean Combination to Support Adaptive QoS
Authors: Xiangbin Zhu
Abstract:
Advances in computing applications in recent years have prompted the demand for more flexible scheduling models for QoS demand. Moreover, in practical applications, partly violated temporal constraints can be tolerated if the violation meets certain distribution. So we need extend the traditional Liu and Lanland model to adapt to these circumstances. There are two extensions, which are the (m, k)-firm model and Window-Constrained model. This paper researches on weakly hard real-time constraints and their combination to support QoS. The fact that a practical application can tolerate some violations of temporal constraint under certain distribution is employed to support adaptive QoS on the open real-time system. The experiment results show these approaches are effective compared to traditional scheduling algorithms.Keywords: Weakly Hard Real-Time, Real-Time, Scheduling, Quality of Service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15791708 Global and Local Structure of Supported Pd Catalysts
Authors: V. Rednic, N. Aldea, P. Marginean, D. Macovei, C. M. Teodorescu, E. Dorolti, F. Matei
Abstract:
The supported Pd catalysts were analyzed by X-ray diffraction and X-ray absorption spectroscopy in order to determine their global and local structure. The average particle size of the supported Pd catalysts was determined by X-ray diffraction method. One of the main purposes of the present contribution is to focus on understanding the specific role of the Pd particle size determined by X-ray diffraction and that of the support oxide. Based on X-ray absorption fine structure spectroscopy analysis we consider that the whole local structure of the investigated samples are distorted concerning the atomic number but the distances between atoms are almost the same as for standard Pd sample. Due to the strong modifications of the Pd cluster local structure, the metal-support interface may influence the electronic properties of metal clusters and thus their reactivity for absorption of the reactant molecules.Keywords: metal-support interaction, supported metal catalysts, synchrotron radiation, X-ray absorption spectroscopy, X-raydiffraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15351707 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20361706 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931705 Exploring Anti-Western Sentiment Among Arabs and Its Influence on Support for Russia in the Ukraine Conflict
Authors: Soran Tarkhani
Abstract:
The phenomenon of significant Arab support for Russia's invasion of Ukraine, despite widespread condemnation from Arab leaders, poses a puzzling scenario. This paper delves into the paradox by employing multiple regression analysis on the online reactions of Arab audiences to the conflict as reported by seven major news networks: CNN Arabic, BBC Arabic, Sky News Arabic, France24 Arabic, DW, Aljazeera, and Al-Arabiya. It hypothesizes that this support stems from prevalent anti-Western sentiment within the Arab world. The empirical findings corroborate the hypothesis, providing insight into the underlying motivations for Arab backing of Russia against Ukraine, despite their historical familiarity with the harsh realities of war.
Keywords: Anti-Western Sentiment, Arab World, Russia-Ukraine Conflict, social media analysis, political sentiment, international relations, regional influence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165