Search results for: prediction of reservoir lithology
1058 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid
Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson
Abstract:
A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481057 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.
Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25071056 Identifying Karst Pattern to Prevent Bell Spring from Being Submerged in Daryan Dam Reservoir
Authors: H. Shafaattalab Dehghani, H. R. Zarei
Abstract:
The large karstic Bell spring with a discharge ranging between 250 and 5300 lit/ sec is one of the most important springs of Kermanshah Province. This spring supplies drinking water of Nodsheh City and its surrounding villages. The spring is located in the reservoir of Daryan Dam and its mouth would be submerged after impounding under a water column of about 110 m height. This paper has aimed to render an account of the karstification pattern around the spring under consideration with the intention of preventing Bell Spring from being submerged in Daryan Dam Reservoir. The studies comprise engineering geology and hydrogeology investigations. Some geotechnical activities included in these studies include geophysical studies, drilling, excavation of exploratory gallery and shaft and diving. The results depict that Bell is a single-conduit siphon spring with 4 m diameter and 85 m height that 32 m of the conduit is located below the spring outlet. To survive the spring, it was decided to plug the outlet and convey the water to upper elevations under the natural pressure of the aquifer. After plugging, water was successfully conveyed to elevation 837 meter above sea level (about 120 m from the outlet) under the natural pressure of the aquifer. This signifies the accuracy of the studies done and proper recognition of the karstification pattern of Bell Spring. This is a unique experience in karst problems in Iran.
Keywords: Bell spring, karst, Daryan Dam, submerged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12211055 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8951054 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: Classification, classifier fusion, CNN, Deep Learning, prediction, SNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7201053 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System
Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain
Abstract:
This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161052 Effect of Relative Permeability on Well Testing Behavior of Naturally Fractured Lean Gas Condensate Reservoirs
Authors: G.H. Montazeri, Z. Dastkhan, H. Aliabadi
Abstract:
Gas condensate Reservoirs show complicated thermodynamic behavior when their pressure reduces to under dew point pressure. Condensate blockage around the producing well cause significant reduction of production rate as well bottom-hole pressure drops below saturation pressure. The main objective of this work was to examine the well test analysis of naturally fractured lean gas condensate reservoir and investigate the effect of condensate formed around the well-bore on behavior of single phase pseudo pressure and its derivative curves. In this work a naturally fractured lean gas condensate reservoir is simulated with compositional simulator. Different sensitivity analysis done on Corry parameters and result of simulator is feed to analytical well testing software. For consideration of these phenomena eighteen compositional models with Capillary number effect are constructed. Matrix relative permeability obeys Corry relative permeability and relative permeability in fracture is linear. Well testing behavior of these models are studied and interpreted. Results show different sensitivity analysis on relative permeability of matrix does not have strong effect on well testing behavior even most part of the matrix around the well is occupied with condensate.
Keywords: Lean gas, fractured condensate reservoir, capillary number, well testing analysis, relative permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29701051 Comparison of Different Neural Network Approaches for the Prediction of Kidney Dysfunction
Authors: Ali Hussian Ali AlTimemy, Fawzi M. Al Naima
Abstract:
This paper presents the prediction of kidney dysfunction using different neural network (NN) approaches. Self organization Maps (SOM), Probabilistic Neural Network (PNN) and Multi Layer Perceptron Neural Network (MLPNN) trained with Back Propagation Algorithm (BPA) are used in this study. Six hundred and sixty three sets of analytical laboratory tests have been collected from one of the private clinical laboratories in Baghdad. For each subject, Serum urea and Serum creatinin levels have been analyzed and tested by using clinical laboratory measurements. The collected urea and cretinine levels are then used as inputs to the three NN models in which the training process is done by different neural approaches. SOM which is a class of unsupervised network whereas PNN and BPNN are considered as class of supervised networks. These networks are used as a classifier to predict whether kidney is normal or it will have a dysfunction. The accuracy of prediction, sensitivity and specificity were found for each type of the proposed networks .We conclude that PNN gives faster and more accurate prediction of kidney dysfunction and it works as promising tool for predicting of routine kidney dysfunction from the clinical laboratory data.Keywords: Kidney Dysfunction, Prediction, SOM, PNN, BPNN, Urea and Creatinine levels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19321050 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651049 Polydopamine Nanoparticle as a Stable and Capacious Nano-Reservoir of Rifampicin
Authors: Tasnuva Tamanna, Aimin Yu
Abstract:
Application of nanoscience in biomedical field has come across as a new era. This study involves the synthesis of nano drug carrier with antibiotic loading. Based on the founding that polydopamine (PDA) nanoparticles could be formed via self-polymerization of dopamine at alkaline pH, one-step synthesis of rifampicin coupled polydopamine (PDA-R) nanoparticles was achieved by adding rifampicin into the dopamine solution. The successful yield of PDA nanoparticles with or without the presence of rifampicin during the polymerization process was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. Drug loading was monitored by UV-vis spectroscopy and the loading efficiency of rifampicin was calculated to be 76%. Such highly capacious nano-reservoir was found very stable with little drug leakage at pH 3.
Keywords: Drug loading, nanoparticles, polydopamine, rifampicin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26711048 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations
Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi
Abstract:
Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).Keywords: Acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8521047 On the Prediction of Transmembrane Helical Segments in Membrane Proteins Based on Wavelet Transform
Abstract:
The prediction of transmembrane helical segments (TMHs) in membrane proteins is an important field in the bioinformatics research. In this paper, a new method based on discrete wavelet transform (DWT) has been developed to predict the number and location of TMHs in membrane proteins. PDB coded as 1KQG was chosen as an example to describe the prediction of the number and location of TMHs in membrane proteins by using this method. To access the effect of the method, 80 proteins with known 3D-structure from Mptopo database are chosen at random as the test objects (including 325 TMHs), 308 of which can be predicted accurately, the average predicted accuracy is 96.3%. In addition, the above 80 membrane proteins are divided into 13 groups according to their function and type. In particular, the results of the prediction of TMHs of the 13 groups are satisfying.Keywords: discrete wavelet transform, hydrophobicity, membrane protein, transmembrane helical segments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14121046 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28581045 Intelligent Earthquake Prediction System Based On Neural Network
Authors: Emad Amar, Tawfik Khattab, Fatma Zada
Abstract:
Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.
Keywords: BP neural network, Prediction, RBF neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32191044 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: Data envelopment analysis, interval DEA, efficiency classification, efficiency prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9381043 The Multi-Layered Perceptrons Neural Networks for the Prediction of Daily Solar Radiation
Authors: Radouane Iqdour, Abdelouhab Zeroual
Abstract:
The Multi-Layered Perceptron (MLP) Neural networks have been very successful in a number of signal processing applications. In this work we have studied the possibilities and the met difficulties in the application of the MLP neural networks for the prediction of daily solar radiation data. We have used the Polack-RibiĂšre algorithm for training the neural networks. A comparison, in term of the statistical indicators, with a linear model most used in literature, is also performed, and the obtained results show that the neural networks are more efficient and gave the best results.Keywords: Daily solar radiation, Prediction, MLP neural networks, linear model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13311042 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.
Keywords: ANFIS, MGT, Prediction modeling, rail track degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951041 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.
Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5191040 New Strategy Agents to Improve Power System Transient Stability
Authors: Mansour A. Mohamed, George G. Karady, Ali M. Yousef
Abstract:
This paper proposes transient angle stability agents to enhance power system stability. The proposed transient angle stability agents divided into two strategy agents. The first strategy agent is a prediction agent that will predict power system instability. According to the prediction agent-s output, the second strategy agent, which is a control agent, is automatically calculating the amount of active power reduction that can stabilize the system and initiating a control action. The control action considered is turbine fast valving. The proposed strategies are applied to a realistic power system, the IEEE 50- generator system. Results show that the proposed technique can be used on-line for power system instability prediction and control.Keywords: Multi-agents, Fast Valving, Power System Transient Stability, Prediction methods,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18531039 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations
Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam
Abstract:
When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.
Keywords: Acid treatment, carbonate, diversion, sandstone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40481038 Energy Map Construction using Adaptive Alpha Grey Prediction Model in WSNs
Authors: Surender Kumar Soni, Dhirendra Pratap Singh
Abstract:
Wireless Sensor Networks can be used to monitor the physical phenomenon in such areas where human approach is nearly impossible. Hence the limited power supply is the major constraint of the WSNs due to the use of non-rechargeable batteries in sensor nodes. A lot of researches are going on to reduce the energy consumption of sensor nodes. Energy map can be used with clustering, data dissemination and routing techniques to reduce the power consumption of WSNs. Energy map can also be used to know which part of the network is going to fail in near future. In this paper, Energy map is constructed using the prediction based approach. Adaptive alpha GM(1,1) model is used as the prediction model. GM(1,1) is being used worldwide in many applications for predicting future values of time series using some past values due to its high computational efficiency and accuracy.Keywords: Adaptive Alpha GM(1, 1) Model, Energy Map, Prediction Based Data Reduction, Wireless Sensor Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18011037 Representing Data without Lost Compression Properties in Time Series: A Review
Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan
Abstract:
Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.
Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16201036 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model
Authors: S. Channgam, A. Sae-Tang, T. Termsaithong
Abstract:
In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.
Keywords: Bak-Tang-Wiesenfeld sandpile model, avalanches, cross-correlation, prediction method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11741035 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks
Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz
Abstract:
Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.Keywords: Customer relationship management, churn prediction, telecom industry, deep learning, Artificial Neural Networks, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7601034 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20441033 Effective Context Lossless Image Coding Approach Based on Adaptive Prediction
Authors: Grzegorz Ulacha, Ryszard StasiĆski
Abstract:
In the paper an effective context based lossless coding technique is presented. Three principal and few auxiliary contexts are defined. The predictor adaptation technique is an improved CoBALP algorithm, denoted CoBALP+. Cumulated predictor error combining 8 bias estimators is calculated. It is shown experimentally that indeed, the new technique is time-effective while it outperforms the well known methods having reasonable time complexity, and is inferior only to extremely computationally complex ones.Keywords: Adaptive prediction, context coding, image losslesscoding, prediction error bias correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13511032 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581031 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30671030 Modeling Erosion Control in Oil Production Wells
Authors: Kenneth I.Eshiet, Yong Sheng
Abstract:
The sand production problem has led researchers into making various attempts to understand the phenomenon. The generally accepted concept is that the occurrence of sanding is due to the in-situ stress conditions and the induced changes in stress that results in the failure of the reservoir sandstone during hydrocarbon production from wellbores. By using a hypothetical cased (perforated) well, an approach to the problem is presented here by using Finite Element numerical modelling techniques. In addition to the examination of the erosion problem, the influence of certain key parameters is studied in order to ascertain their effect on the failure and subsequent erosion process. The major variables investigated include: drawdown, perforation depth, and the erosion criterion. Also included is the determination of the optimal mud pressure for given operational and reservoir conditions. The improved understanding between parameters enables the choice of optimal values to minimize sanding during oil production.
Keywords: Equivalent Plastic Strain, Erosion, Hydrocarbon Production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14721029 Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District
Authors: Fariba Esfandiary, Ghafoor Aghaie, Ali Dolati Mehr
Abstract:
Wheat prediction was carried out using different meteorological variables together with agro meteorological indices in Ardebil district for the years 2004-2005 & 2005–2006. On the basis of correlation coefficients, standard error of estimate as well as relative deviation of predicted yield from actual yield using different statistical models, the best subset of agro meteorological indices were selected including daily minimum temperature (Tmin), accumulated difference of maximum & minimum temperatures (TD), growing degree days (GDD), accumulated water vapor pressure deficit (VPD), sunshine hours (SH) & potential evapotranspiration (PET). Yield prediction was done two months in advance before harvesting time which was coincide with commencement of reproductive stage of wheat (5th of June). It revealed that in the final statistical models, 83% of wheat yield variability was accounted for variation in above agro meteorological indices.
Keywords: Wheat yields prediction, agro meteorological indices, statistical models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146