Search results for: periodic boundary condition
2150 Variational Iteration Method for the Solution of Boundary Value Problems
Authors: Olayiwola M.O., Gbolagade A .W., Akinpelu F. O.
Abstract:
In this work, we present a reliable framework to solve boundary value problems with particular significance in solid mechanics. These problems are used as mathematical models in deformation of beams. The algorithm rests mainly on a relatively new technique, the Variational Iteration Method. Some examples are given to confirm the efficiency and the accuracy of the method.
Keywords: Variational iteration method, boundary value problems, convergence, restricted variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21022149 Multiple Positive Periodic Solutions of a Delayed Predatory-Prey System with Holling Type II Functional Response
Authors: Kaihong Zhao, Jiuqing Liu
Abstract:
In this letter, we considers a delayed predatory-prey system with Holling type II functional response. Under some sufficient conditions, the existence of multiple positive periodic solutions is obtained by using Mawhin’s continuation theorem of coincidence degree theory. An example is given to illustrate the effectiveness of our results.
Keywords: Multiple positive periodic solutions, Predatory-prey system, Coincidence degree, Holling type II functional response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14962148 Sliding Mode Control with Fuzzy Boundary Layer to Air-Air Interception Problem
Authors: Mustafa Resa Becan
Abstract:
The performance of a type of fuzzy sliding mode control is researched by considering the nonlinear characteristic of a missile-target interception problem to obtain a robust interception process. The variable boundary layer by using fuzzy logic is proposed to reduce the chattering around the switching surface then is applied to the interception model which was derived. The performances of the sliding mode control with constant and fuzzy boundary layer are compared at the end of the study and the results are evaluated.
Keywords: Sliding mode control, fuzzy, boundary layer, interception problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20102147 An Asymptotic Solution for the Free Boundary Parabolic Equations
Authors: Hsuan-Ku Liu, Ming Long Liu
Abstract:
In this paper, we investigate the solution of a two dimensional parabolic free boundary problem. The free boundary of this problem is modelled as a nonlinear integral equation (IE). For this integral equation, we propose an asymptotic solution as time is near to maturity and develop an integral iterative method. The computational results reveal that our asymptotic solution is very close to the numerical solution as time is near to maturity.
Keywords: Integral equation, asymptotic solution, free boundary problem, American exchange option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14732146 Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks
Authors: Christian H. Sanabria-Montaña, Rodrigo Huerta-Quintanilla
Abstract:
A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others.Keywords: Clustering coefficient, criminology, generalized, regular network d-dimensional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16362145 Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion
Authors: Arash Karimipour, M. Afrand, M. M. Bazofti
Abstract:
The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.Keywords: Nanofluid, Top lid oscillation, Mixed convection, Volume fraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292144 Comparison Results of Two-point Fuzzy Boundary Value Problems
Authors: Hsuan-Ku Liu
Abstract:
This paper investigates the solutions of two-point fuzzy boundary value problems as the form x = f(t, x(t)), x(0) = A and x(l) = B, where A and B are fuzzy numbers. There are four different solutions for the problems when the lateral type of H-derivative is employed to solve the problems. As f(t, x) is a monotone function of x, these four solutions are reduced to two different solutions. As f(t, x(t)) = λx(t) or f(t, x(t)) = -λx(t), solutions and several comparison results are presented to indicate advantages of each solution.
Keywords: Fuzzy derivative, lateral type of H-derivative, fuzzy differential equations, fuzzy boundary value problems, boundary value problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15322143 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays
Authors: Yongkun Li, Meng Hu
Abstract:
A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.
Keywords: Predator-prey system, stage structure, time delay, HOPF bifurcation, periodic solution, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15692142 Periodic Oscillations in a Delay Population Model
Authors: Changjin Xu, Peiluan Li
Abstract:
In this paper, a nonlinear delay population model is investigated. Choosing the delay as a bifurcation parameter, we demonstrate that Hopf bifurcation will occur when the delay exceeds a critical value. Global existence of bifurcating periodic solutions is established. Numerical simulations supporting the theoretical findings are included.
Keywords: Population model, Stability, Hopf bifurcation, Delay, Global Hopf bifurcation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522141 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics
Authors: Arturo Ayala-Hernandez, Humberto H´ıjar
Abstract:
We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.
Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22272140 Dynamics of a Discrete Three Species Food Chain System
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
The main purpose of this paper is to investigate a discrete time three–species food chain system with ratio dependence. By employing coincidence degree theory and analysis techniques, sufficient conditions for existence of periodic solutions are established.
Keywords: Food chain, ratio–dependent, coincidence degree, periodic solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15142139 Second-Order Slip Flow and Heat Transfer in a Long Isoflux Microchannel
Authors: Huei Chu Weng
Abstract:
This paper presents a study on the effect of second-order slip on forced convection through a long isoflux heated or cooled planar microchannel. The fully developed solutions of flow and thermal fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and local heat flux boundary conditions. Results reveal that when the average flow velocity increases or the wall heat flux amount decreases, the role of thermal creep becomes more insignificant, while the effect of second-order slip becomes larger. The second-order term in the Deissler slip boundary condition is found to contribute a positive velocity slip and then to lead to a lower pressure drop as well as a lower temperature rise for the heated-wall case or to a higher temperature rise for the cooled-wall case. These findings are contrary to predictions made by the Karniadakis slip model.
Keywords: Microfluidics, forced convection, thermal creep, second-order boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23582138 The Boundary Theory between Laminar and Turbulent Flows
Authors: Tomasz M. Jankowski
Abstract:
The basis of this paper is the assumption, that graviton is a measurable entity of molecular gravitational acceleration and this is not a hypothetical entity. The adoption of this assumption as an axiom is tantamount to fully opening the previously locked door to the boundary theory between laminar and turbulent flows. It leads to the theorem, that the division of flows of Newtonian (viscous) fluids into laminar and turbulent is true only, if the fluid is influenced by a powerful, external force field. The mathematical interpretation of this theorem, presented in this paper shows, that the boundary between laminar and turbulent flow can be determined theoretically. This is a novelty, because thus far the said boundary was determined empirically only and the reasons for its existence were unknown.Keywords: Freed gravitons, free gravitons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14642137 Cooling Turbine Blades using Exciting Boundary Layer
Authors: Ali Ghobadi, Seyed Mohammad Javadi, Behnam Rahimi
Abstract:
The present study is concerned with the effect of exciting boundary layer on cooling process in a gas-turbine blades. The cooling process is numerically investigated. Observations show cooling the first row of moving or stable blades leads to increase their life-time. Results show that minimum temperature in cooling line with exciting boundary layer is lower than without exciting. Using block in cooling line of turbines' blade causes flow pattern and stability in boundary layer changed that causes increase in heat transfer coefficient. Results show at the location of block, temperature of turbines' blade is significantly decreased. The k-ε turbulence model is used.Keywords: Cooling, Exciting Boundary Layer, Heat Transfer, Turbine Blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22812136 Numerical Investigation of Two-dimensional Boundary Layer Flow Over a Moving Surface
Authors: Mahmoud Zarrini, R.N. Pralhad
Abstract:
In this chapter, we have studied Variation of velocity in incompressible fluid over a moving surface. The boundary layer equations are on a fixed or continuously moving flat plate in the same or opposite direction to the free stream with suction and injection. The boundary layer equations are transferred from partial differential equations to ordinary differential equations. Numerical solutions are obtained by using Runge-Kutta and Shooting methods. We have found numerical solution to velocity and skin friction coefficient.
Keywords: Boundary layer, continuously moving surface, shooting method, skin friction coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15762135 A Large-Eddy Simulation of Vortex Cell flow with Incoming Turbulent Boundary Layer
Authors: Arpiruk Hokpunna, Michael Manhart
Abstract:
We present a Large-Eddy simulation of a vortex cell with circular shaped. The results show that the flow field can be sub divided into four important zones, the shear layer above the cavity, the stagnation zone, the vortex core in the cavity and the boundary layer along the wall of the cavity. It is shown that the vortex core consits of solid body rotation without much turbulence activity. The vortex is mainly driven by high energy packets that are driven into the cavity from the stagnation point region and by entrainment of fluid from the cavity into the shear layer. The physics in the boundary layer along the cavity-s wall seems to be far from that of a canonical boundary layer which might be a crucial point for modelling this flow.Keywords: Turbulent flow, Large eddy simulations, boundary layer and cavity flow, vortex cell flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82382134 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (III)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using Leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferential equation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11692133 Bifurcations of a Delayed Prototype Model
Authors: Changjin Xu
Abstract:
In this paper, a delayed prototype model is studied. Regarding the delay as a bifurcation parameter, we prove that a sequence of Hopf bifurcations will occur at the positive equilibrium when the delay increases. Using the normal form method and center manifold theory, some explicit formulae are worked out for determining the stability and the direction of the bifurcated periodic solutions. Finally, Computer simulations are carried out to explain some mathematical conclusions.
Keywords: Prototype model, Stability, Hopf bifurcation, Delay, Periodic solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16622132 Periodic Solutions for Some Strongly Nonlinear Oscillators by He's Energy Balance Method
Abstract:
In this paper, applying He-s energy balance method to determine frequency formulation relations of nonlinear oscillators with discontinuous term or fractional potential. By calculation and computer simulations, compared with the exact solutions show that the results obtained are of high accuracy.
Keywords: He's energy balance method, periodic solution, nonlinear oscillator, discontinuous, fractional potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13732131 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (I)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11952130 Existence of Solution for Four-Point Boundary Value Problems of Second-Order Impulsive Differential Equations (II)
Authors: Li Ge
Abstract:
In this paper, we study the existence of solution of the four-point boundary value problem for second-order differential equations with impulses by using leray-Schauder theory:Keywords: impulsive differential equations, impulsive integraldifferentialequation, boundary value problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11002129 Triggering Supersonic Boundary-Layer Instability by Small-Scale Vortex Shedding
Authors: Guohua Tu, Zhi Fu, Zhiwei Hu, Neil D Sandham, Jianqiang Chen
Abstract:
Tripping of boundary-layers from laminar to turbulent flow, which may be necessary in specific practical applications, requires high amplitude disturbances to be introduced into the boundary layers without large drag penalties. As a possible improvement on fixed trip devices, a technique based on vortex shedding for enhancing supersonic flow transition is demonstrated in the present paper for a Mach 1.5 boundary layer. The compressible Navier-Stokes equations are solved directly using a high-order (fifth-order in space and third-order in time) finite difference method for small-scale cylinders suspended transversely near the wall. For cylinders with proper diameter and mount location, asymmetry vortices shed within the boundary layer are capable of tripping laminar-turbulent transition. Full three-dimensional simulations showed that transition was enhanced. A parametric study of the size and mounting location of the cylinder is carried out to identify the most effective setup. It is also found that the vortex shedding can be suppressed by some factors such as wall effect.
Keywords: Boundary layer instability, boundary layer transition, vortex shedding, supersonic flows, flow control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6192128 Existence of Positive Solutions for Second-Order Difference Equation with Discrete Boundary Value Problem
Authors: Thanin Sitthiwirattham, Jiraporn Reunsumrit
Abstract:
We study the existence of positive solutions to the three points difference-summation boundary value problem. We show the existence of at least one positive solution if f is either superlinear or sublinear by applying the fixed point theorem due to Krasnoselskii in cones.
Keywords: Positive solution, Boundary value problem, Fixed point theorem, Cone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17292127 Hopf Bifurcation Analysis for a Delayed Predator–prey System with Stage Structure
Authors: Kejun Zhuang
Abstract:
In this paper, a delayed predator–prey system with stage structure is investigated. Sufficient conditions for the system to have multiple periodic solutions are obtained when the delay is sufficiently large by applying Bendixson-s criterion. Further, some numerical examples are given.Keywords: Predator-prey system, Stage structure, Hopf bifurcation, Periodic solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13302126 Application of He-s Amplitude Frequency Formulation for a Nonlinear Oscillator with Fractional Potential
Abstract:
In this paper, He-s amplitude frequency formulation is used to obtain a periodic solution for a nonlinear oscillator with fractional potential. By calculation and computer simulations, compared with the exact solution shows that the result obtained is of high accuracy.
Keywords: He's amplitude frequency formulation, Periodic solution, Nonlinear oscillator, Fractional potential.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13682125 Synchronization of Traveling Waves within a Hollow-Core Vortex
Authors: H. Ait Abderrahmane, M. Fayed, H. D. Ng, G. H. Vatistas
Abstract:
The present paper expands details and confirms the transition mechanism between two subsequent polygonal patterns of the hollow-core vortex. Using power spectral analysis, we confirm in this work that the transition from any N-gon to (N+1)-gon pattern observed within a hollow-core vortex of shallow rotating flows occurs in two steps. The regime was quasi-periodic before the frequencies lock (synchronization). The ratios of locking frequencies were found to be equal to (N-1)/N.
Keywords: Patterns, quasi-periodic, swirling, synchronization, transition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9192124 Quartic Nonpolynomial Spline Solutions for Third Order Two-Point Boundary Value Problem
Authors: Talaat S. El-Danaf
Abstract:
In this paper, we develop quartic nonpolynomial spline method for the numerical solution of third order two point boundary value problems. It is shown that the new method gives approximations, which are better than those produced by other spline methods. Convergence analysis of the method is discussed through standard procedures. Two numerical examples are given to illustrate the applicability and efficiency of the novel method.Keywords: Quartic nonpolynomial spline, Two-point boundary value problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20082123 Bifurcation Analysis for a Physiological Control System with Delay
Authors: Kejun Zhuang
Abstract:
In this paper, a delayed physiological control system is investigated. The sufficient conditions for stability of positive equilibrium and existence of local Hopf bifurcation are derived. Furthermore, global existence of periodic solutions is established by using the global Hopf bifurcation theory. Finally, numerical examples are given to support the theoretical analysis.
Keywords: Physiological control system, global Hopf bifurcation, periodic solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15582122 Global Existence of Periodic Solutions in a Delayed Tri–neuron Network
Authors: Kejun Zhuang, Zhaohui Wen
Abstract:
In this paper, a tri–neuron network model with time delay is investigated. By using the Bendixson-s criterion for high– dimensional ordinary differential equations and global Hopf bifurcation theory for functional differential equations, sufficient conditions for existence of periodic solutions when the time delay is sufficiently large are established.Keywords: Delay, global Hopf bifurcation, neural network, periodicsolutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14842121 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675