
 

 

 
Abstract—The present paper expands details and confirms the 

transition mechanism between two subsequent polygonal patterns of 
the hollow-core vortex. Using power spectral analysis, we confirm in 
this work that the transition from any N-gon to (N+1)-gon pattern 
observed within a hollow-core vortex of shallow rotating flows 
occurs in two steps. The regime was quasi-periodic before the 
frequencies lock (synchronization). The ratios of locking frequencies 
were found to be equal to (N-1)/N. 

 
Keywords—Patterns, quasi-periodic, swirling, synchronization, 

transition. 

I. INTRODUCTION 

WIRLING flows produced in closed or open stationary 
cylindrical containers are considered as laboratory model 

for rotating flows encountered in nature and industries. These 
laboratory flows exhibit patterns similar to those observed in 
geophysical, astrophysical, and industrial flows. Three 
parameters, namely the initial fluid height and the disk speed 
and diameter, control the dynamics and the stability of such 
fluid motion which involves a solid-like body rotation and a 
shear layer flow. Because of the cylindrical confining wall, the 
bulk flow is formed by two distinct flow regions, namely the 
shear layer and solid-like body rotation flows. The former 
flow occupies the outer region around the walls; it surrounds 
the second flow, which occupies the inner region. The 
interface between these two flows is subject to Kelvin-
Helmholtz instability. This instability manifests as azimuthal 
waves which roll up into satellite vortices and in turn impart 
the interface polygonal shapes, e.g. see [3], [4], [6]-[8]. The 
inner solid-like body rotation region can also be subjected to 
inertial instabilities which manifest as Kelvin’s waves. The 
rotating wave observed in our experiments belongs to this type 
of waves. Indeed, in our experiment, a hollow-core vortex, 
produced by a rotating disk near the bottom of a vertical 
stationary cylinder, is within the inner solid body rotation flow 
region and acts as a wave guide to azimuthal rotating Kelvin’s 
waves. First, the shape of hollow-core vortex was circular 
before it bifurcates into rotating waves (polygonal patterns), 
when a critical disk speed was reached, the maximum wave 
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number observed is the hexagon. 
Since the instability mechanisms at work in our experiment 

and in other studies such as [7] are different, one should 
expect that the results of the variation of the control 
parameters will be different. Indeed, in the experiment carried 
by Poncet and Chauve [7], increase in the disk speed results in 
the increases of the shear; as a consequence, the satellite 
vortices merge and their number decreases. This explains the 
decrease of the number of the sides of the polygonal patterns 
in their experiment. However, in our experiment the number 
of the sides of the polygonal pattern increases with the disk 
speed; this can be interpreted as an increase in the vibrating 
mode of a system to the increase of input energy due to the 
disk rotation. Moreover, the mechanisms leading to the 
transition between polygonal patterns are also different in our 
experiment and those of Chomaz et al. [3]. In the latter, the 
patterns are caused by Kelvin-Helmholtz instability. Chomaz 
et al. [3] reported that the leading mechanism, that governs the 
transition from one pattern to another when the disk speed was 
increased, is the well known sub-harmonics cascade. 
However, in our experiments the transition from N-gon to 
(N+1)-gon was found to follow another route; it occurs 
through synchronization of the two rotating waves with wave 
numbers N and N+1. This transition was previously proposed 
and partially described in Ait Abderrahmane et al. [1] using 
the nonlinear dynamics theory. The latter was built on the 
observation of one transition, from 3-gon to 4-gon. In the 
present paper, other transitions are analyzed to establish the 
transition mechanism from N-gon to (N+1)-gon.  

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUE 

A. Experimental Setup 

As shown in Fig. 1, a stationary cylindrical container was 
used with 284 mm diameter. The rotating disk with 252 mm 
diameter was fixed at 20 mm from the bottom. The experiment 
was conducted for two initial water heights, 20 mm and 40 
mm. Our experiments are similar to those conducted by 
Jansson et al. [5]. They used similar setup with different 
dimensions. Similar phenomenon polygonal patterns at the 
surface of the disk were observed in both experiments. The 
disk was coated with white plastic sheet for better 
visualization; however, it does not influence prominently the 
transition mechanism. 
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Fig. 1 Experimental setup 
 
The rotation of the circular disk at the bottom of the tank 

introduces angular momentum into the flow. This angular 
momentum is directed towards the cylindrical wall by the 
radial velocity component. Cylindrical wall diverts this flow 
towards the interior, and a meridional overturning flow is 
established. As the rotating frequency of the disc increases, the 
meridional flow imparts enough angular momentum towards 
the cylinder axis to establish a central vortex flow. With a 
further increase in the disc frequency, the magnitude of 
angular momentum directed towards the central axis increases, 
and the flow balances this angular momentum by an increased 
radial flow outwards from the central axis. This radial outflow 
causes a pressure reduction in the central region. As the radial 
outflow becomes sufficiently strong, a depression is generated 
in the central region and the water free surface first takes a 
shape of inverted bell and then forms a hollow core-vortex 
when the speed of rotating disk reaches a critical value. As the 
free surface touches the surface of the disk, the line 
intersection between the liquid and the surface of disk outlines 
the core shape. The resulting hollow-core vortex is 
characterized by a thin layer of fluid in solid-like body 
rotation; this layer surrounds the hollow. This layer is also 
surrounded by a shear flow region where the azimuthal 
velocity decreases in the radial direction until it vanishes at the 
wall of the container. The shape of the hollow or the inner 
solid-like body rotation layer changes with the disk speed. As 
the speed of the disk increases, the circular shape of the core 
first becomes elliptical and then acquires different polygonal 
shapes; see Fig. 2. It is worth noting that the apexes of the 
resulting polygonal patterns are located on almost invariable 
circle of radius approximately half the tank radius. 

Three parameters determine generally the formation of the 
patterns and their stability; namely, the water height, speed 
and radius of the disk. The variation of any of these 
parameters has a consequence on pattern formation and its 
transition towards a nearby pattern. For instance, increasing 
the water height causes a transition from (N+1)-gon and (N)-
gon while decreasing the water height produces a transition 
from (N+1)-gon into (N)-gon. Similarly, increasing the disk 

radius produces a transition from (N+1)-gon into (N)-gon, and 
the transition occurs in the opposite direction when the disk 
speed is decreased.  However, in our studies, we have chosen 
to vary the disk speed because it is more practical and 
consistent to control for a wide range of variation.  

 

 

Fig. 2 Polygonal vortex-core patterns. The inner white region is the 
dry part of the disk. The colors indicate the variation of water depth 

from the inner to the outer flow region 
 
While the mechanism leading to the formation of the 

hollow vortex-core is basically understood, the physics behind 
the formation of the patterns remains unclear. Swirling flows 
such ours are subject to the influence of three instability 
mechanisms: inertial, Kelvin-Helmholtz, and centrifugal 
instabilities. In very shallow water condition, the prominent 
instability mechanism behind the formation of the polygonal 
pattern appears to be Kelvin-Helmholtz. This mechanism is at 
work at the interface between the inner solid-like body 
rotation and the shear flow regions. However, when the water 
height is higher but sufficiently small to satisfy a shallow 
water condition, the instability mechanism at work turns to be 
inertial instability. This mechanism is at work in solid-like 
body rotation flow region such as vortex cores. According to 
vortex stability theory, such instability mechanism leads to the 
formation of Kelvin’s waves. In our experiment, the patterns 
occur in the inner region, i.e. in the solid-like body rotation, 
which is more prone to inertial instability. However, in both 
cases of very shallow and shallow water condition, both 
mechanisms should be at work even one of them dominates in 
one or other cases. Moreover, because of the momentum 
stratification in the radial direction, the centrifugal instability 
mechanism should also play a role. The interplay of these 
three instability mechanisms during the formation and their 
stability remains unclear. A thorough theory that can explain 
the formation such patterns and the interaction the different 
instabilities needs to be developed; experimental results like 
the ones reported in the present study can help in developing 
of theory that might shed light on the physics of this 
phenomenon. 

For exceedingly low rotational disk speeds (fd), the vortex 
core remains circular (N= 0). Increasing its rotation, the 
hollow-vortex core starts to wobble (N= 1). A further increase 
of disk speed yields progressively the vortex-core to 
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“elliptical” (N= 2), triangular (N= 3), square (N= 4), 
pentagonal (N= 5), and hexagonal (N= 6) patterns as 
illustrated in Fig. 2. To increase the visibility of the patterns, a 
blue water-soluble dye was injected into the water and 
uniform circular lighting was used. A CMOS high-speed 
camera (pco.1200hs) was placed on the top of the cylinder, 
and the hollow-vortex core formed on the disk was imaged. 
The camera acquired sequence of images at a rate of 30 frames 
per second with an exposure time of 1/510 second. The 
colored images illustrate the stratification of the hollow-core 
vortex Each color indicates a water depth within the vortex 
core, which increases continuously as we move away from the 
center of the disk. The continuous increase in the water depth, 
depicted in the Fig. 2 by the colored layers indicates 
momentum stratification in the radial direction. Moreover, 
Fig. 2 indicates the shrinking of the inner solid-like body 
rotation flow region as we move ahead towards higher modes. 
This indicates the interpenetration of the outer shear layer flow 
region into the inner one. The prominence of the shear flow at 
higher modes and the disappearance of the solid-like flow 
region in favor of the shear flow region might explain the 
limited number of instability modes. The instability modes are 
tightly related to the inertial instability acting in the inner 
solid-like rotation region and they are limited to six 
(hexagonal pattern); see Jansson et al. [5] and Vatistas et al. 
[9]. For the quantitative analysis, we used the grey images. 

 

 

Fig. 3 Elliptical pattern (N= 2) and corresponding power spectrum 
 

 

Fig. 4 First transition from N=2 to N=3 and corresponding power 
spectrum 

B. Measurement Technique 

The transition is investigated using image processing 
technique. First, the original 8-bit gray-scale image is 
converted into a binary image, using a suitable threshold, in 
order to extract the polygonal contours. A low low-pass 
Gaussian filter was applied to get rid of the remaining image 
noises. The standard edgetection procedure was used to get the 
boundaries of the pattern. 

III. RESULTS AND DISCUSSION 

We use the Fast Fourier Transform (FFT) analyze of the 
time series of the radial displacement for a given point on the 
contour. At the beginning, the disk speed is fixed at fd = 2.3 
Hz, the hollow-core espouses an ellipse (N= 2) revolving with 
a frequency fp = 0.73 Hz which is half of the fundamental 
frequency f1 = 1.46 Hz, the frequency of the mode of higher 
amplitude; see Fig. 3. Increasing gradually the speed of the 
disk, the ellipse opens up, and its contours become distorted 
by a growing wave (N= 3). Increasing further the frequency of 
the rotating disk up to fd = 3.08 Hz, the pattern undergoes a 
transition from a distorted ellipse to a triangular shape (N= 3). 
The power spectrum that corresponds to this transition is 
shown in Fig. 4. The power spectrum shows that during the 
transition process, the amplitude of the modulating wave N= 3 
is of the same order as of the initial pattern, N= 2. The two 
frequencies are irrefutably present; they are respectively f1 = 
1.64 Hz and f2 = 3.19 Hz. The ratio, f1/f2, between these two 
frequencies is approximately equal to ½, which indicates that 
the transition occurs when the two waves lock or synchronize. 
This frequency locking is consistent with the theory of 
stability of quasi-periodic regimes, see [2]. Increasing further 
the disk speed to fd = 3.1 Hz, the transition is completed and 
the vortex-core shape set in N= 3 pattern; the power spectrum 
shown in Fig. 5 displays clearly the N= 3 fundamental 
frequency f1 = 3.2 Hz. Continuing the increase of the disk 
speed, the triangular pattern was brought towards the 
transition into square pattern. Similar to the first transition 
from elliptical to triangular core, at a certain critical disk 
speed, the modulating wave N= 4 synchronizes with the 
triangular wave (N = 3) and the transition occurs; this critical 
speed is found to be fd = 3.51 Hz. The power spectrum 
corresponding to this transition is shown in Fig. 6. The figure 
shows two frequencies f1 = 3.2 Hz and f2 = 4.71 Hz that 
correspond to the patterns N= 3 and N= 4, respectively. The 
ratio between these two frequencies is very close to 2/3. At 
slightly higher disk speed fd = 3.55 Hz, the square pattern sets 
in; see Fig. 7. Increasing further the disk speed, the square 
pattern undergoes a transition into a pentagon. The transition 
from N = 4 to N = 5 occurs at disk speed of fd = 3.8 Hz; 
similarly to previous transitions, the power spectrum indicates 
the presence of two dominant frequencies f1 = 4.75 Hz and f2 = 
6.01 Hz (as shown in Fig. 8). The ratio between these two 
frequencies is very close to 4/5. Increasing slightly the disc 
speed, the pattern becomes a pentagon. Fig. 9 shows the power 
spectrum for this pentagon pattern where the fundamental 
frequency is f1 = 6.1 Hz. Because the disk speed interval 
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where the pentagon occurs was so narrow that it was 
impossible for us to follow the transition towards the hexagon 
and perform proper power spectrum analysis. However, based 
on the previous observations, we can anticipate that it would 
follow the same route behavior, i.e. the transition will occur 
when the wave N= 6 synchronize with the wave N= 5 and the 
ratio between the frequencies is close to 5/6 dimensionally. 

 

 

Fig. 5 Triangular pattern (N = 3) and corresponding power spectrum 
 

 

Fig. 6 Second transition from N=3 to N=4 and corresponding power 
spectrum 

 

 

Fig. 7 Square pattern (N = 4) and corresponding power spectrum 

 

Fig. 8 Third transition from N=4 to N=5 and corresponding power 
spectrum 

 

 

Fig. 9 Pentagonal pattern (N = 5) and corresponding power spectrum 

IV. CONCLUSION 

Through the present experiments, we confirmed the 
transition mechanism between two subsequent polygonal 
waves patterns, observed within the hollow-core vortex of 
shallow rotating flows. The transition involves the universal 
route of quasi-periodic regime and synchronization. The 
transition occurs when the frequencies corresponding to N and 
N+1 waves lock at a ratio of (N-1)/N. 
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