Search results for: Multimodal Emotion Detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1645

Search results for: Multimodal Emotion Detection

1555 A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I

Authors: Padmakumar S., Vivek Agarwal, Kallol Roy

Abstract:

A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.

Keywords: DC motor model, Fault detection and diagnosis Kalman Filter, Unscented Kalman Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
1554 The Whale Optimization Algorithm and Its Implementation in MATLAB

Authors: S. Adhirai, R. P. Mahapatra, Paramjit Singh

Abstract:

Optimization is an important tool in making decisions and in analysing physical systems. In mathematical terms, an optimization problem is the problem of finding the best solution from among the set of all feasible solutions. The paper discusses the Whale Optimization Algorithm (WOA), and its applications in different fields. The algorithm is tested using MATLAB because of its unique and powerful features. The benchmark functions used in WOA algorithm are grouped as: unimodal (F1-F7), multimodal (F8-F13), and fixed-dimension multimodal (F14-F23). Out of these benchmark functions, we show the experimental results for F7, F11, and F19 for different number of iterations. The search space and objective space for the selected function are drawn, and finally, the best solution as well as the best optimal value of the objective function found by WOA is presented. The algorithmic results demonstrate that the WOA performs better than the state-of-the-art meta-heuristic and conventional algorithms.

Keywords: Optimization, optimal value, objective function, optimization problems, meta-heuristic optimization algorithms, Whale Optimization Algorithm, Implementation, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914
1553 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: Affective computing, emotion recognition, humanoid robot, Human-Robot-Interaction (HRI), social robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
1552 Rapid Detection System of Airborne Pathogens

Authors: Shigenori Togashi, Kei Takenaka

Abstract:

We developed new processes which can collect and detect rapidly airborne pathogens such as the avian flu virus for the pandemic prevention. The fluorescence antibody technique is known as one of high-sensitive detection methods for viruses, but this needs up to a few hours to bind sufficient fluorescence dyes to viruses for detection. In this paper, we developed a mist-labeling can detect substitution viruses in a short time to improve the binding rate of fluorescent dyes and substitution viruses by the micro reaction process. Moreover, we developed the rapid detection system with the above “mist labeling”. The detection system set with a sampling bag collecting patient’s breath and a cartridge can detect automatically pathogens within 10 minutes.

Keywords: Viruses, Sampler, Mist, Detection, Fluorescent dyes, Microreaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2848
1551 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering

Authors: Mounira RouaÐùnia, Noureddine Doghmane

Abstract:

In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.

Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
1550 A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings

Authors: Rosemarie Velik, Dietmar Bruckner

Abstract:

Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.

Keywords: building automation, biomimetrics, dynamic scene interpretation, human-like perception, neuro-symbolic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
1549 A Novel Hybrid Mobile Agent Based Distributed Intrusion Detection System

Authors: Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar

Abstract:

The first generation of Mobile Agents based Intrusion Detection System just had two components namely data collection and single centralized analyzer. The disadvantage of this type of intrusion detection is if connection to the analyzer fails, the entire system will become useless. In this work, we propose novel hybrid model for Mobile Agent based Distributed Intrusion Detection System to overcome the current problem. The proposed model has new features such as robustness, capability of detecting intrusion against the IDS itself and capability of updating itself to detect new pattern of intrusions. In addition, our proposed model is also capable of tackling some of the weaknesses of centralized Intrusion Detection System models.

Keywords: Distributed Intrusion Detection System, Mobile Agents, Network Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1548 Intrusion Detection based on Distance Combination

Authors: Joffroy Beauquier, Yongjie Hu

Abstract:

The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.

Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1547 Design the Bowtie Antenna for the Detection of the Tumor in Microwave Tomography

Authors: Muhammd Hassan Khalil, Xu Jiadong

Abstract:

Early breast cancer detection is an emerging field of research as it can save the women infected by malignant tumors. Microwave breast imaging is based on the electrical property contrast between healthy and malignant tumor. This contrast can be detected by use of microwave energy with an array of antennas that illuminate the breast through coupling medium and by measuring the scattered fields. In this paper, author has been presented the design and simulation results of the bowtie antenna. This bowtie antenna is designed for the detection of breast cancer detection.

Keywords: Breast cancer detection, Microwave Imaging, Tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
1546 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application

Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed

Abstract:

This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.

Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1545 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection

Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy

Abstract:

It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.

Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
1544 A Framework for Review Spam Detection Research

Authors: Mohammadali Tavakoli, Atefeh Heydari, Zuriati Ismail, Naomie Salim

Abstract:

With the increasing number of people reviewing products online in recent years, opinion sharing websites has become the most important source of customers’ opinions. Unfortunately, spammers generate and post fake reviews in order to promote or demote brands and mislead potential customers. These are notably destructive not only for potential customers, but also for business holders and manufacturers. However, research in this area is not adequate, and many critical problems related to spam detection have not been solved to date. To provide green researchers in the domain with a great aid, in this paper, we have attempted to create a highquality framework to make a clear vision on review spam-detection methods. In addition, this report contains a comprehensive collection of detection metrics used in proposed spam-detection approaches. These metrics are extremely applicable for developing novel detection methods.

Keywords: Fake reviews, Feature collection, Opinion spam, Spam detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
1543 Imposter Detection Based on Location in Vehicular Ad-Hoc Network

Authors: Sanjoy Das, Akash Arya, Rishi Pal Singh

Abstract:

Vehicular Ad hoc Network is basically the solution of several problems associated while vehicles are plying on the road. In this paper, we have focused on the detection of imposter node while it has stolen the ID's of the authenticated vehicle in the network. The purpose is to harm the network through imposter messages. Here, we have proposed a protocol namely Imposter Detection based on Location (IDBL), which will store the location coordinate of the each vehicle as the key of the authenticity of the message so that imposter node can be detected. The imposter nodes send messages from a stolen ID and show that it is from an authentic node ID. So, to detect this anomaly, the first location is checked and observed different from original vehicle location. This node is known as imposter node. We have implemented the algorithm through JAVA and tested various types of node distribution and observed the detection probability of imposter node.

Keywords: Authentication, detection, IDBL protocol, imposter node, node detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
1542 Fast Algorithm of Shot Cut Detection

Authors: Lenka Krulikovská, Jaroslav Polec, Tomáš Hirner

Abstract:

In this paper we present a novel method, which reduces the computational complexity of abrupt cut detection. We have proposed fast algorithm, where the similarity of frames within defined step is evaluated instead of comparing successive frames. Based on the results of simulation on large video collection, the proposed fast algorithm is able to achieve 80% reduction of needed frames comparisons compared to actually used methods without the shot cut detection accuracy degradation.

Keywords: Abrupt cut, fast algorithm, shot cut detection, Pearson correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1541 Development of Intelligent Time/Frequency Based Signal Detection Algorithm for Intrusion Detection System

Authors: Waqas Ahmed, S Sajjad Haider Zaidi

Abstract:

For the past couple of decades Weak signal detection is of crucial importance in various engineering and scientific applications. It finds its application in areas like Wireless communication, Radars, Aerospace engineering, Control systems and many of those. Usually weak signal detection requires phase sensitive detector and demodulation module to detect and analyze the signal. This article gives you a preamble to intrusion detection system which can effectively detect a weak signal from a multiplexed signal. By carefully inspecting and analyzing the respective signal, this system can successfully indicate any peripheral intrusion. Intrusion detection system (IDS) is a comprehensive and easy approach towards detecting and analyzing any signal that is weakened and garbled due to low signal to noise ratio (SNR). This approach finds significant importance in applications like peripheral security systems.

Keywords: Data Acquisition, fast frequency transforms, Lab VIEW software, weak signal detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2514
1540 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: Face detection algorithm, Haar features, Security of ATM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
1539 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery

Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh

Abstract:

In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of WorldView-2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows with accuracy of 94% effectively and automatically. Furthermore, the new shadow detection index improved road extraction from 82% to 93%.

Keywords: Spectral index, shadow detection, remote sensing images, WorldView-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3330
1538 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges

Authors: M. Kowalski, M. Kastek, M. Szustakowski

Abstract:

Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertz.

Keywords: Infrared, image processing, object detection, screening camera, terahertz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095
1537 Adaptive Network Intrusion Detection Learning: Attribute Selection and Classification

Authors: Dewan Md. Farid, Jerome Darmont, Nouria Harbi, Nguyen Huu Hoa, Mohammad Zahidur Rahman

Abstract:

In this paper, a new learning approach for network intrusion detection using naïve Bayesian classifier and ID3 algorithm is presented, which identifies effective attributes from the training dataset, calculates the conditional probabilities for the best attribute values, and then correctly classifies all the examples of training and testing dataset. Most of the current intrusion detection datasets are dynamic, complex and contain large number of attributes. Some of the attributes may be redundant or contribute little for detection making. It has been successfully tested that significant attribute selection is important to design a real world intrusion detection systems (IDS). The purpose of this study is to identify effective attributes from the training dataset to build a classifier for network intrusion detection using data mining algorithms. The experimental results on KDD99 benchmark intrusion detection dataset demonstrate that this new approach achieves high classification rates and reduce false positives using limited computational resources.

Keywords: Attributes selection, Conditional probabilities, information gain, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
1536 Shot Boundary Detection Using Octagon Square Search Pattern

Authors: J. Kavitha, S. Sowmyayani, P. Arockia Jansi Rani

Abstract:

In this paper, a shot boundary detection method is presented using octagon square search pattern. The color, edge, motion and texture features of each frame are extracted and used in shot boundary detection. The motion feature is extracted using octagon square search pattern. Then, the transition detection method is capable of detecting the shot or non-shot boundaries in the video using the feature weight values. Experimental results are evaluated in TRECVID video test set containing various types of shot transition with lighting effects, object and camera movement within the shots. Further, this paper compares the experimental results of the proposed method with existing methods. It shows that the proposed method outperforms the state-of-art methods for shot boundary detection.

Keywords: Content-based indexing and retrieval, cut transition detection, discrete wavelet transform, shot boundary detection, video source.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1003
1535 Use of Hierarchical Temporal Memory Algorithm in Heart Attack Detection

Authors: Tesnim Charrad, Kaouther Nouira, Ahmed Ferchichi

Abstract:

In order to reduce the number of deaths due to heart problems, we propose the use of Hierarchical Temporal Memory Algorithm (HTM) which is a real time anomaly detection algorithm. HTM is a cortical learning algorithm based on neocortex used for anomaly detection. In other words, it is based on a conceptual theory of how the human brain can work. It is powerful in predicting unusual patterns, anomaly detection and classification. In this paper, HTM have been implemented and tested on ECG datasets in order to detect cardiac anomalies. Experiments showed good performance in terms of specificity, sensitivity and execution time.

Keywords: HTM, Real time anomaly detection, ECG, Cardiac Anomalies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
1534 Intrusion Detection System Based On The Integrity of TCP Packet

Authors: Moad Alhamaty , Ali Yazdian , Fathi Al-qadasi

Abstract:

A common way to elude the signature-based Network Intrusion Detection System is based upon changing a recognizable attack to an unrecognizable one via the IDS. For example, in order to evade sign accommodation with intrusion detection system markers, a hacker spilt the payload packet into many small pieces or hides them within messages. In this paper we try to model the main fragmentation attack and create a new module in the intrusion detection architecture system which recognizes the main fragmentation attacks through verification of integrity checking of TCP packet in order to prevent elusion of the system and also to announce the necessary alert to the system administrator.

Keywords: Intrusion detection system, Evasion techniques, Fragmentation attacks, TCP Packet integrity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1533 On-Road Text Detection Platform for Driver Assistance Systems

Authors: Guezouli Larbi, Belkacem Soundes

Abstract:

The automation of the text detection process can help the human in his driving task. Its application can be very useful to help drivers to have more information about their environment by facilitating the reading of road signs such as directional signs, events, stores, etc. In this paper, a system consisting of two stages has been proposed. In the first one, we used pseudo-Zernike moments to pinpoint areas of the image that may contain text. The architecture of this part is based on three main steps, region of interest (ROI) detection, text localization, and non-text region filtering. Then, in the second step, we present a convolutional neural network architecture (On-Road Text Detection Network - ORTDN) which is considered as a classification phase. The results show that the proposed framework achieved ≈ 35 fps and an mAP of ≈ 90%, thus a low computational time with competitive accuracy.

Keywords: Text detection, CNN, PZM, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166
1532 Frame Texture Classification Method (FTCM) Applied on Mammograms for Detection of Abnormalities

Authors: Kjersti Engan, Karl Skretting, Jostein Herredsvela, Thor Ole Gulsrud

Abstract:

Texture classification is an important image processing task with a broad application range. Many different techniques for texture classification have been explored. Using sparse approximation as a feature extraction method for texture classification is a relatively new approach, and Skretting et al. recently presented the Frame Texture Classification Method (FTCM), showing very good results on classical texture images. As an extension of that work the FTCM is here tested on a real world application as detection of abnormalities in mammograms. Some extensions to the original FTCM that are useful in some applications are implemented; two different smoothing techniques and a vector augmentation technique. Both detection of microcalcifications (as a primary detection technique and as a last stage of a detection scheme), and soft tissue lesions in mammograms are explored. All the results are interesting, and especially the results using FTCM on regions of interest as the last stage in a detection scheme for microcalcifications are promising.

Keywords: detection, mammogram, texture classification, dictionary learning, FTCM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1531 Identifying Attack Code through an Ontology-Based Multiagent Tool: FROID

Authors: Salvador Mandujano

Abstract:

This paper describes the design and results of FROID, an outbound intrusion detection system built with agent technology and supported by an attacker-centric ontology. The prototype features a misuse-based detection mechanism that identifies remote attack tools in execution. Misuse signatures composed of attributes selected through entropy analysis of outgoing traffic streams and process runtime data are derived from execution variants of attack programs. The core of the architecture is a mesh of self-contained detection cells organized non-hierarchically that group agents in a functional fashion. The experiments show performance gains when the ontology is enabled as well as an increase in accuracy achieved when correlation cells combine detection evidence received from independent detection cells.

Keywords: Outbound intrusion detection, knowledge management, multiagent systems, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
1530 The Comparation of Limits of Detection of Lateral Flow Immunochromatographic Strips of Different Types of Mycotoxins

Authors: X. Zhao, F. Tian

Abstract:

Mycotoxins are secondary metabolic products of fungi. These are poisonous, carcinogens and mutagens in nature and pose a serious health threat to both humans and animals, causing severe illnesses and even deaths. The rapid, simple and cheap detection methods of mycotoxins are of immense importance and in great demand in the food and beverage industry as well as in agriculture and environmental monitoring. Lateral flow immunochromatographic strips (ICSTs) have been widely used in food safety, environment monitoring. 46 papers were identified and reviewed on Google Scholar and Scopus for their limit of detection and nanomaterial on Lateral flow ICSTs on different types of mycotoxins. The papers were dated 2001-2021. 25 papers were compared to identify the lowest limit of detection of among different mycotoxins (Aflatoxin B1: 10, Zearalenone: 5, Fumonisin B1: 5, Trichothecene-A: 5). Most of these highly sensitive strips are competitive. Sandwich structures are usually used in large scale detection. In conclusion, the limit of detection of Aflatoxin B1 is the lowest among these mycotoxins. Gold-nanoparticle based immunochromatographic test strips have the lowest limit of detection. Five papers involve smartphone detection and they all detect aflatoxin B1 with gold nanoparticles.

Keywords: Aflatoxin B1, limit of detection, gold nanoparticle, lateral flow immunochromatographic strips, mycotoxins, smartphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 422
1529 Emotion Classification for Students with Autism in Mathematics E-learning using Physiological and Facial Expression Measures

Authors: Hui-Chuan Chu, Min-Ju Liao, Wei-Kai Cheng, William Wei-Jen Tsai, Yuh-Min Chen

Abstract:

Avoiding learning failures in mathematics e-learning environments caused by emotional problems in students with autism has become an important topic for combining of special education with information and communications technology. This study presents an adaptive emotional adjustment model in mathematics e-learning for students with autism, emphasizing the lack of emotional perception in mathematics e-learning systems. In addition, an emotion classification for students with autism was developed by inducing emotions in mathematical learning environments to record changes in the physiological signals and facial expressions of students. Using these methods, 58 emotional features were obtained. These features were then processed using one-way ANOVA and information gain (IG). After reducing the feature dimension, methods of support vector machines (SVM), k-nearest neighbors (KNN), and classification and regression trees (CART) were used to classify four emotional categories: baseline, happy, angry, and anxious. After testing and comparisons, in a situation without feature selection, the accuracy rate of the SVM classification can reach as high as 79.3-%. After using IG to reduce the feature dimension, with only 28 features remaining, SVM still has a classification accuracy of 78.2-%. The results of this research could enhance the effectiveness of eLearning in special education.

Keywords: Emotion classification, Physiological and facial Expression measures, Students with autism, Mathematics e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
1528 Spatio-Temporal Video Slice Edges Analysis for Shot Transition Detection and Classification

Authors: Aissa Saoudi, Hassane Essafi

Abstract:

In this work we will present a new approach for shot transition auto-detection. Our approach is based on the analysis of Spatio-Temporal Video Slice (STVS) edges extracted from videos. The proposed approach is capable to efficiently detect both abrupt shot transitions 'cuts' and gradual ones such as fade-in, fade-out and dissolve. Compared to other techniques, our method is distinguished by its high level of precision and speed. Those performances are obtained due to minimizing the problem of the boundary shot detection to a simple 2D image partitioning problem.

Keywords: Boundary shot detection, Shot transition detection, Video analysis, Video indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
1527 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
1526 Efficient Iterative Detection Technique in Wireless Communication System

Authors: Hwan-Jun Choi, Sung-Bok Choi, Hyoung-Kyu Song

Abstract:

Recently, among the MIMO-OFDM detection techniques, a lot of papers suggested V-BLAST scheme which can achieve high data rate. Therefore, the signal detection of MIMO-OFDM system is important issue. In this paper, efficient iterative V-BLAST detection technique is proposed in wireless communication system. The proposed scheme adjusts the number of candidate symbol and iterative scheme based on channel state. According to the simulation result, the proposed scheme has better BER performance than conventional schemes and similar BER performance of the QRD-M with iterative scheme. Moreover complexity of proposed scheme has 50.6% less than complexity of QRD-M detection with iterative scheme. Therefore the proposed detection scheme can be efficiently used in wireless communication.

Keywords: MIMO-OFDM, V-BLAST, QR-decomposition, QRD-M, DFE, Iterative scheme, Channel condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058