Search results for: Forecast
81 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins Method, Holt’s Method, Mean Absolute Percentage Error (MAPE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170980 Development of Neural Network Prediction Model of Energy Consumption
Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail
Abstract:
In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 264379 Forecasting for Financial Stock Returns Using a Quantile Function Model
Authors: Yuzhi Cai
Abstract:
In this talk, we introduce a newly developed quantile function model that can be used for estimating conditional distributions of financial returns and for obtaining multi-step ahead out-of-sample predictive distributions of financial returns. Since we forecast the whole conditional distributions, any predictive quantity of interest about the future financial returns can be obtained simply as a by-product of the method. We also show an application of the model to the daily closing prices of Dow Jones Industrial Average (DJIA) series over the period from 2 January 2004 - 8 October 2010. We obtained the predictive distributions up to 15 days ahead for the DJIA returns, which were further compared with the actually observed returns and those predicted from an AR-GARCH model. The results show that the new model can capture the main features of financial returns and provide a better fitted model together with improved mean forecasts compared with conventional methods. We hope this talk will help audience to see that this new model has the potential to be very useful in practice.Keywords: DJIA, Financial returns, predictive distribution, quantile function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 163778 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.
Keywords: Cutting condition, surface roughness, decision tree, CART algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87077 Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region
Authors: Sunusi N., Kresna A. J., Islamiyati A., Raupong
Abstract:
Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.Keywords: Earthquake forecast, Hazard Rate, Likelihood point process, Point process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149576 Numerical Modeling of Waves and Currents by Using a Hydro-Sedimentary Model
Authors: Mustapha Kamel Mihoubi, Hocine Dahmani
Abstract:
Over recent years much progress has been achieved in the fields of numerical modeling shoreline processes: waves, currents, waves and current. However, there are still some problems in the existing models to link the on the first, the hydrodynamics of waves and currents and secondly, the sediment transport processes and due to the variability in time, space and interaction and the simultaneous action of wave-current near the shore. This paper is the establishment of a numerical modeling to forecast the sediment transport from development scenarios of harbor structure. It is established on the basis of a numerical simulation of a water-sediment model via a 2D model using a set of codes calculation MIKE 21-DHI software. This is to examine the effect of the sediment transport drivers following the dominant incident wave in the direction to pass input harbor work under different variants planning studies to find the technical and economic limitations to the sediment transport and protection of the harbor structure optimum solution.Keywords: Swell, current, radiation, stress, mesh, MIKE21, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135175 Short-Term Electric Load Forecasting Using Multiple Gaussian Process Models
Authors: Tomohiro Hachino, Hitoshi Takata, Seiji Fukushima, Yasutaka Igarashi
Abstract:
This paper presents a Gaussian process model-based short-term electric load forecasting. The Gaussian process model is a nonparametric model and the output of the model has Gaussian distribution with mean and variance. The multiple Gaussian process models as every hour ahead predictors are used to forecast future electric load demands up to 24 hours ahead in accordance with the direct forecasting approach. The separable least-squares approach that combines the linear least-squares method and genetic algorithm is applied to train these Gaussian process models. Simulation results are shown to demonstrate the effectiveness of the proposed electric load forecasting.
Keywords: Direct method, electric load forecasting, Gaussian process model, genetic algorithm, separable least-squares method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198574 Tools for Analysis and Optimization of Standalone Green Microgrids
Authors: William Anderson, Kyle Kobold, Oleg Yakimenko
Abstract:
Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.Keywords: Microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106073 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.
Keywords: Bayesian, Forecast, Stock, BART.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73472 SimplexIS: Evaluating the Impact of e-Gov Simplification Measures in the Information System Architecure
Authors: Bruno Félix, André Vasconcelos, José Tribolet
Abstract:
Nowadays increasingly the population makes use of Information Technology (IT). As such, in recent year the Portuguese government increased its focus on using the IT for improving people-s life and began to develop a set of measures to enable the modernization of the Public Administration, and so reducing the gap between Public Administration and citizens.Thus the Portuguese Government launched the Simplex Program. However these SIMPLEX eGov measures, which have been implemented over the years, present a serious challenge: how to forecast its impact on existing Information Systems Architecture (ISA). Thus, this research is focus in addressing the problem of automating the evaluation of the actual impact of implementation an eGovSimplification and Modernization measures in the Information Systems Architecture. To realize the evaluation we proposes a Framework, which is supported by some key concepts as: Quality Factors, ISA modeling, Multicriteria Approach, Polarity Profile and Quality MetricsKeywords: Information System Architecture, Evaluation, eGov Simplification measure, Multicriteria Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144571 Earnings-Related Information, Cognitive Bias, and the Disposition Effect
Authors: Chih-Hsiang Chang, Pei-Shan Kao
Abstract:
This paper discusses the reaction of investors in the Taiwan stock market to the most probable unknown earnings-related information and the most probable known earnings-related information. As compared with the previous literature regarding the effect of an official announcement of earnings forecast revision, this paper further analyzes investors’ cognitive bias toward the unknown and known earnings-related information, and the role of media during the investors' reactions to the foresaid information shocks. The empirical results show that both the unknown and known earnings-related information provides useful information content for a stock market. In addition, cognitive bias and disposition effect are the behavioral pitfalls that commonly occur in the process of the investors' reactions to the earnings-related information. Finally, media coverage has a remarkable influence upon the investors' trading decisions.Keywords: Cognitive bias, role of media, disposition effect, earnings-related information, behavioral pitfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87570 WEMax: Virtual Manned Assembly Line Generation
Authors: Won Kyung Ham, Kang Hoon Cho, Yongho Chung, Sang C. Park
Abstract:
Presented in this paper is a framework of a software ‘WEMax’. The WEMax is invented for analysis and simulation for manned assembly lines to sustain and improve performance of manufacturing systems. In a manufacturing system, performance, such as productivity, is a key of competitiveness for output products. However, the manned assembly lines are difficult to forecast performance, because human labors are not expectable factors by computer simulation models or mathematical models. Existing approaches to performance forecasting of the manned assembly lines are limited to matters of the human itself, such as ergonomic and workload design, and non-human-factor-relevant simulation. Consequently, an approach for the forecasting and improvement of manned assembly line performance is needed to research. As a solution of the current problem, this study proposes a framework that is for generation and simulation of virtual manned assembly lines, and the framework has been implemented as a software.
Keywords: Performance Forecasting, Simulation, Virtual Manned Assembly Line.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189869 Spatial Time Series Models for Rice and Cassava Yields Based On Bayesian Linear Mixed Models
Authors: Panudet Saengseedam, Nanthachai Kantanantha
Abstract:
This paper proposes a linear mixed model (LMM) with spatial effects to forecast rice and cassava yields in Thailand at the same time. A multivariate conditional autoregressive (MCAR) model is assumed to present the spatial effects. A Bayesian method is used for parameter estimation via Gibbs sampling Markov Chain Monte Carlo (MCMC). The model is applied to the rice and cassava yields monthly data which have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The results show that the proposed model has better performance in most provinces in both fitting part and validation part compared to the simple exponential smoothing and conditional auto regressive models (CAR) from our previous study.
Keywords: Bayesian method, Linear mixed model, Multivariate conditional autoregressive model, Spatial time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224768 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers
Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch
Abstract:
Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.
Keywords: Finite Element Method, Flood Forecasting, HEC-RAS, Indus river.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268667 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153866 Phytoadaptation in Desert Soil Prediction Using Fuzzy Logic Modeling
Authors: S. Bouharati, F. Allag, M. Belmahdi, M. Bounechada
Abstract:
In terms of ecology forecast effects of desertification, the purpose of this study is to develop a predictive model of growth and adaptation of species in arid environment and bioclimatic conditions. The impact of climate change and the desertification phenomena is the result of combined effects in magnitude and frequency of these phenomena. Like the data involved in the phytopathogenic process and bacteria growth in arid soil occur in an uncertain environment because of their complexity, it becomes necessary to have a suitable methodology for the analysis of these variables. The basic principles of fuzzy logic those are perfectly suited to this process. As input variables, we consider the physical parameters, soil type, bacteria nature, and plant species concerned. The result output variable is the adaptability of the species expressed by the growth rate or extinction. As a conclusion, we prevent the possible strategies for adaptation, with or without shifting areas of plantation and nature adequate vegetation.
Keywords: Climate changes, dry soil, Phytopathogenicity, Predictive model, Fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187765 Development of a Complex Meteorological Support System for UAVs
Authors: Z. Bottyán, F. Wantuch, A. Z. Gyöngyösi, Z. Tuba, K. Hadobács, P. Kardos, R. Kurunczi
Abstract:
The sensitivity of UAVs to the atmospheric effects are apparent. All the same the meteorological support for the UAVs missions is often non-adequate or partly missing. In our paper we show a new complex meteorological support system for different types of UAVs pilots, specialists and decision makers, too. The mentioned system has two important parts with different forecasts approach such as the statistical and dynamical ones. The statistical prediction approach is based on a large climatological data base and the special analog method which is able to select similar weather situations from the mentioned data base to apply them during the forecasting procedure. The applied dynamic approach uses the specific WRF model runs twice a day and produces 96 hours, high resolution weather forecast for the UAV users over the Hungary. An easy to use web-based system can give important weather information over the Carpathian basin in Central-Europe. The mentioned products can be reached via internet connection.Keywords: Aviation meteorology, statistical weather prediction, unmanned aerial systems, WRF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276464 The Role of State in Combating Religious Extremism and Terrorism
Authors: Kadyrzhan Smagulov, Mukhtar Senggirbay, Sholpan Zhandossova, Lyaila Ivatova, Gulnar Nassimova
Abstract:
terrorism and extremism are among the most dangerous and difficult to forecast the phenomena of our time, which are becoming more diverse forms and rampant. Terrorist attacks often produce mass casualties, involve the destruction of material and spiritual values, beyond the recovery times, sow hatred among nations, provoke war, mistrust and hatred between the social and national groups, which sometimes can not be overcome within a generation. Currently, the countries of Central Asia are a topical issue – the threat of terrorism and religious extremism, which grow not only in our area, but throughout the world. Of course, in each of the terrorist threat is assessed differently. In our country the problem of terrorism should not be acutely. Thus, after independence and sovereignty of Kazakhstan has chosen the path of democracy, progress and free economy. With the policy of the President of Kazakhstan Nursultan Nazarbayev and well-organized political and economic reforms, there has been economic growth and rising living standards, socio-political stability, ensured civil peace and accord in society [1].Keywords: Kazakhstan, national security, religious extremism and terrorism, ethnic conflict
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277963 Optimum Neural Network Architecture for Precipitation Prediction of Myanmar
Authors: Khaing Win Mar, Thinn Thu Naing
Abstract:
Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.
Keywords: Precipitation prediction, monthly precipitation, neural network models, Myanmar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174962 Energy Communities from Municipality Level to Province Level: A Comparison Using Autoregressive Integrated Moving Average Model
Authors: Amro Issam Hamed Attia Ramadan, Marco Zappatore, Pasquale Balena, Antonella Longo
Abstract:
Considering the energy crisis that is hitting Europe, it becomes increasingly necessary to change energy policies to depend less on fossil fuels and replace them with energy from renewable sources. This has triggered the urge to use clean energy, not only to satisfy energy needs and fulfill the required consumption, but also to decrease the danger of climatic changes due to harmful emissions. Many countries have already started creating energy communities based on renewable energy sources. The first step to understanding energy needs in any place is to perfectly know the consumption. In this work, we aim to estimate electricity consumption for a municipality that makes up part of a rural area located in southern Italy using forecast models that allow for the estimation of electricity consumption for the next 10 years, and we then apply the same model to the province where the municipality is located and estimate the future consumption for the same period to examine whether it is possible to start from the municipality level to reach the province level when creating energy communities.
Keywords: ARIMA, electricity consumption, forecasting models, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28461 Probabilistic Model Development for Project Performance Forecasting
Authors: Milad Eghtedari Naeini, Gholamreza Heravi
Abstract:
In this paper, based on the past project cost and time performance, a model for forecasting project cost performance is developed. This study presents a probabilistic project control concept to assure an acceptable forecast of project cost performance. In this concept project activities are classified into sub-groups entitled control accounts. Then obtain the Stochastic S-Curve (SS-Curve), for each sub-group and the project SS-Curve is obtained by summing sub-groups- SS-Curves. In this model, project cost uncertainties are considered through Beta distribution functions of the project activities costs required to complete the project at every selected time sections through project accomplishment, which are extracted from a variety of sources. Based on this model, after a percentage of the project progress, the project performance is measured via Earned Value Management to adjust the primary cost probability distribution functions. Then, accordingly the future project cost performance is predicted by using the Monte-Carlo simulation method.Keywords: Monte Carlo method, Probabilistic model, Project forecasting, Stochastic S-curve
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271860 Economic Loss due to Ganoderma Disease in Oil Palm
Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho
Abstract:
Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.
Keywords: Ganoderma, oil palm, regression model, yield loss, economic loss.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323759 Economic Forecasting Model in Practice Using the Regression Analysis: The Relationship of Price, Domestic Output, Gross National Product, and Trend Variable of Gas or Oil Production
Authors: Ashiquer Rahman, Ummey Salma, Afrin Jannat
Abstract:
Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or Organization of the Petroleum Exporting Countries (OPEC) announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study in relation between the number of wellheads and other economic variables may give us some understanding of the mechanism indicated the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: price of the wellhead, domestic output, and Gross National Product (GNP) constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.
Keywords: Price, domestic output, GNP, trend variable, wildcat activity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4758 Forecasting Electricity Spot Price with Generalized Long Memory Modeling: Wavelet and Neural Network
Authors: Souhir Ben Amor, Heni Boubaker, Lotfi Belkacem
Abstract:
This aims of this paper is to forecast the electricity spot prices. First, we focus on modeling the conditional mean of the series so we adopt a generalized fractional -factor Gegenbauer process (k-factor GARMA). Secondly, the residual from the -factor GARMA model has used as a proxy for the conditional variance; these residuals were predicted using two different approaches. In the first approach, a local linear wavelet neural network model (LLWNN) has developed to predict the conditional variance using the Back Propagation learning algorithms. In the second approach, the Gegenbauer generalized autoregressive conditional heteroscedasticity process (G-GARCH) has adopted, and the parameters of the k-factor GARMA-G-GARCH model has estimated using the wavelet methodology based on the discrete wavelet packet transform (DWPT) approach. The empirical results have shown that the k-factor GARMA-G-GARCH model outperform the hybrid k-factor GARMA-LLWNN model, and find it is more appropriate for forecasts.Keywords: k-factor, GARMA, LLWNN, G-GARCH, electricity price, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 99657 Model Development for Allocation of Raw Material in Timber Processing Industry in Indonesia
Authors: Muh. Hisjam, Nancy Oktyajati, Wakhid A. Jauhari, Wahyudi Sutopo
Abstract:
This research is intended to develop a raw material allocation model in timber processing industry in Perum Perhutani Unit I, Central Java, Indonesia. The model can be used to determine the quantity of allocation of timber between chain in the supply chain to select supplier considering factors that are log price and the distance. In determining the quantity of allocation of timber between chains in the supply chain, the model considers the optimal inventory in each chain. Whilst the optimal inventory is determined based on demand forecast, the capacity and safety stock. Problem solving allocation is conducted by developing linear programming model that aims to minimize the total cost of the purchase, transportation cost and storage costs at each chain. The results of numerical examples show that the proposed model can generate savings of the purchase cost of 20.84% and select suppliers with mileage closer.
Keywords: Allocation model, linear programming, purchase costs, storage costs, suppliers, transportation costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148756 Historical and Future Rainfall Variations in Bangladesh
Authors: M. M. Hossain, M. Z. Hasan, M. Alauddin, S. Akhter
Abstract:
Climate change has become a major concern across the world as the intensity along with quantity of the rainfall, mean surface temperature and other climatic parameters have been changed not only in Bangladesh but also in the entire globe. Bangladesh has already experienced many natural hazards. Among them changing of rainfall pattern, erratic and heavy rainfalls are very common. But changes of rainfall pattern and its amount is still in question to some extent. This study aimed to unfold how the historical rainfalls varied over time and how would be their future trends. In this context, historical rainfall data (1975-2014) were collected from Bangladesh Metrological Department (BMD) and then a time series model was developed using Box-Jenkins algorithm in IBM SPSS to forecast the future rainfall. From the historical data analysis, this study revealed that the amount of rainfall decreased over the time and shifted to the post monsoons. Forecasted rainfall shows that the pre-monsoon and early monsoon will get drier in future whereas late monsoon and post monsoon will show huge fluctuations in rainfall magnitudes with temporal variations which means Bangladesh will get comparatively drier seasons in future which may be a serious problem for the country as it depends on agriculture.
Keywords: Monsoon, Pre-monsoon, rainfall, pattern, variations, IBM-SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 133555 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162854 Classification of Soil Aptness to Establish of Panicum virgatum in Mississippi using Sensitivity Analysis and GIS
Authors: Eduardo F. Arias, William Cooke III, Zhaofei Fan, William Kingery
Abstract:
During the last decade Panicum virgatum, known as Switchgrass, has been broadly studied because of its remarkable attributes as a substitute pasture and as a functional biofuel source. The objective of this investigation was to establish soil suitability for Switchgrass in the State of Mississippi. A linear weighted additive model was developed to forecast soil suitability. Multicriteria analysis and Sensitivity analysis were utilized to adjust and optimize the model. The model was fit using seven years of field data associated with soils characteristics collected from Natural Resources Conservation System - United States Department of Agriculture (NRCS-USDA). The best model was selected by correlating calculated biomass yield with each model's soils-based output for Switchgrass suitability. Coefficient of determination (r2) was the decisive factor used to establish the 'best' soil suitability model. Coefficients associated with the 'best' model were implemented within a Geographic Information System (GIS) to create a map of relative soil suitability for Switchgrass in Mississippi. A Geodatabase associated with soil parameters was built and is available for future Geographic Information System use.Keywords: Aptness, GIS, sensitivity analysis, switchgrass, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153553 Dynamic Self-Scheduling of Pumped-Storage Power Plant in Energy and Ancillary Service Markets Using Sliding Window Technique
Authors: P. Kanakasabapathy, Radhika. S,
Abstract:
In the competitive electricity market environment, the profit of the pumped-storage plant in the energy market can be maximized by operating it as a generator, when market clearing price is high and as a pump, to pump water from lower reservoir to upper reservoir, when the price is low. An optimal self-scheduling plan has been developed for a pumped-storage plant, carried out on weekly basis in order to maximize the profit of the plant, keeping into account of all the major uncertainties such as the sudden ancillary service delivery request and the price forecasting errors. For a pumped storage power plant to operate in a real time market successive self scheduling has to be done by considering the forecast of the day-ahead market and the modified reservoir storage due to the ancillary service request of the previous day. Sliding Window Technique has been used for successive self scheduling to ensure profit for the plant.
Keywords: Ancillary services, BPSO, Power System Economics (Electricity markets), Self-Scheduling, Sliding Window Technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257452 Model-free Prediction based on Tracking Theory and Newton Form of Polynomial
Authors: Guoyuan Qi , Yskandar Hamam, Barend Jacobus van Wyk, Shengzhi Du
Abstract:
The majority of existing predictors for time series are model-dependent and therefore require some prior knowledge for the identification of complex systems, usually involving system identification, extensive training, or online adaptation in the case of time-varying systems. Additionally, since a time series is usually generated by complex processes such as the stock market or other chaotic systems, identification, modeling or the online updating of parameters can be problematic. In this paper a model-free predictor (MFP) for a time series produced by an unknown nonlinear system or process is derived using tracking theory. An identical derivation of the MFP using the property of the Newton form of the interpolating polynomial is also presented. The MFP is able to accurately predict future values of a time series, is stable, has few tuning parameters and is desirable for engineering applications due to its simplicity, fast prediction speed and extremely low computational load. The performance of the proposed MFP is demonstrated using the prediction of the Dow Jones Industrial Average stock index.Keywords: Forecast, model-free predictor, prediction, time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784