Search results for: reconfigurable machine tool
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2812

Search results for: reconfigurable machine tool

1702 An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits

Authors: Ahmad T. Al-Taani

Abstract:

In this paper, an efficient structural approach for recognizing on-line handwritten digits is proposed. After reading the digit from the user, the slope is estimated and normalized for adjacent nodes. Based on the changing of signs of the slope values, the primitives are identified and extracted. The names of these primitives are represented by strings, and then a finite state machine, which contains the grammars of the digits, is traced to identify the digit. Finally, if there is any ambiguity, it will be resolved. Experiments showed that this technique is flexible and can achieve high recognition accuracy for the shapes of the digits represented in this work.

Keywords: Digits Recognition, Pattern Recognition, FeatureExtraction, Structural Primitives, Document Processing, Handwritten Recognition, Primitives Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2640
1701 C@sa: Intelligent Home Control and Simulation

Authors: Berardina De Carolis, Giovanni Cozzolongo

Abstract:

In this paper, we present C@sa, a multiagent system aiming at modeling, controlling and simulating the behavior of an intelligent house. The developed system aims at providing to architects, designers and psychologists a simulation and control tool for understanding which is the impact of embedded and pervasive technology on people daily life. In this vision, the house is seen as an environment made up of independent and distributed devices, controlled by agents, interacting to support user's goals and tasks.

Keywords: Ambient intelligence, agent-based systems, influence diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
1700 Development of State Model Theory for External Exclusive NOR Type LFSR Structures

Authors: Afaq Ahmad

Abstract:

Using state space technique and GF(2) theory, a simulation model for external exclusive NOR type LFSR structures is developed. Through this tool a systematic procedure is devised for computing pseudo-random binary sequences from such structures.

Keywords: LFSR, external exclusive NOR type, recursivebinary sequence, initial state - next state, state transition matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1595
1699 Concurrent Approach to Data Parallel Model using Java

Authors: Bala Dhandayuthapani Veerasamy

Abstract:

Parallel programming models exist as an abstraction of hardware and memory architectures. There are several parallel programming models in commonly use; they are shared memory model, thread model, message passing model, data parallel model, hybrid model, Flynn-s models, embarrassingly parallel computations model, pipelined computations model. These models are not specific to a particular type of machine or memory architecture. This paper expresses the model program for concurrent approach to data parallel model through java programming.

Keywords: Concurrent, Data Parallel, JDK, Parallel, Thread

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2096
1698 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
1697 Building an Arithmetic Model to Assess Visual Consistency in Townscape

Authors: Dheyaa Hussein, Peter Armstrong

Abstract:

The phenomenon of visual disorder is prominent in contemporary townscapes. This paper provides a theoretical framework for the assessment of visual consistency in townscape in order to achieve more favourable outcomes for users. In this paper, visual consistency refers to the amount of similarity between adjacent components of townscape. The paper investigates parameters which relate to visual consistency in townscape, explores the relationships between them and highlights their significance. The paper uses arithmetic methods from outside the domain of urban design to enable the establishment of an objective approach of assessment which considers subjective indicators including users’ preferences. These methods involve the standard of deviation, colour distance and the distance between points. The paper identifies urban space as a key representative of the visual parameters of townscape. It focuses on its two components, geometry and colour in the evaluation of the visual consistency of townscape. Accordingly, this article proposes four measurements. The first quantifies the number of vertices, which are points in the three-dimensional space that are connected, by lines, to represent the appearance of elements. The second evaluates the visual surroundings of urban space through assessing the location of their vertices. The last two measurements calculate the visual similarity in both vertices and colour in townscape by the calculation of their variation using methods including standard of deviation and colour difference. The proposed quantitative assessment is based on users’ preferences towards these measurements. The paper offers a theoretical basis for a practical tool which can alter the current understanding of architectural form and its application in urban space. This tool is currently under development. The proposed method underpins expert subjective assessment and permits the establishment of a unified framework which adds to creativity by the achievement of a higher level of consistency and satisfaction among the citizens of evolving townscapes.

Keywords: Townscape, Urban Design, Visual Assessment, Visual Consistency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
1696 PSS and SVC Controller Design by Chaos and PSO Algorithms to Enhancing the Power System Stability

Authors: Saeed jalilzadeh, Mohammad Reza Safari Tirtashi, Mohsen Sadeghi

Abstract:

this paper focuses on designing of PSS and SVC controller based on chaos and PSO algorithms to improve the stability of power system. Single machine infinite bus (SMIB) system with SVC located at the terminal of generator has been considered to evaluate the proposed controllers where both SVC and PSS have the same controller. The coefficients of PSS and SVC controller have been optimized by chaos and PSO algorithms. Finally the system with proposed controllers has been simulated for the special disturbance in input power of generator, and then the dynamic responses of generator have been presented. The simulation results showed that the system composed with recommended controller has outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, CHAOS, PSO, Stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
1695 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: Mining Big Data, Big Data, Machine learning, Data Streams, Telecommunication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479
1694 A Design of Supply Chain Management System with Flexible Planning Capability

Authors: Chia-Hui Huang, Han-Ying Kao

Abstract:

In production planning (PP) periods with excess capacity and growing demand, the manufacturers have two options to use the excess capacity. First, it could do more changeovers and thus reduce lot sizes, inventories, and inventory costs. Second, it could produce in excess of demand in the period and build additional inventory that can be used to satisfy future demand increments, thus delaying the purchase of the next machine that is required to meet the growth in demand. In this study we propose an enhanced supply chain planning model with flexible planning capability. In addition, a 3D supply chain planning system is illustrated.

Keywords: Supply chain, capacity expansion, inventory management, planning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
1693 Influence of Thermal Damage on the Mechanical Strength of Trimmed CFRP

Authors: Guillaume Mullier, Jean François Chatelain

Abstract:

Carbon Fiber Reinforced Plastics (CFRPs) are widely used for advanced applications, in particular in aerospace, automotive and wind energy industries. Once cured to near net shape, CFRP parts need several finishing operations such as trimming, milling or drilling in order to accommodate fastening hardware and meeting the final dimensions. The present research aims to study the effect of the cutting temperature in trimming on the mechanical strength of high performance CFRP laminates used for aeronautics applications. The cutting temperature is of great importance when dealing with trimming of CFRP. Temperatures higher than the glass-transition temperature (Tg) of the resin matrix are highly undesirable: they cause degradation of the matrix in the trimmed edges area, which can severely affect the mechanical performance of the entire component. In this study, a 9.50mm diameter CVD diamond coated carbide tool with six flutes was used to trim 24-plies CFRP laminates. A 300m/min cutting speed and 1140mm/min feed rate were used in the experiments. The tool was heated prior to trimming using a blowtorch, for temperatures ranging from 20°C to 300°C. The temperature at the cutting edge was measured using embedded KType thermocouples. Samples trimmed for different cutting temperatures, below and above Tg, were mechanically tested using three-points bending short-beam loading configurations. New cutting tools as well as worn cutting tools were utilized for the experiments. The experiments with the new tools could not prove any correlation between the length of cut, the cutting temperature and the mechanical performance. Thus mechanical strength was constant, regardless of the cutting temperature. However, for worn tools, producing a cutting temperature rising up to 450°C, thermal damage of the resin was observed. The mechanical tests showed a reduced mean resistance in short beam configuration, while the resistance in three point bending decreases with increase of the cutting temperature.

Keywords: Composites, Trimming, Thermal Damage, Surface Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
1692 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281
1691 GIS-based Approach for Land-Use Analysis: A Case Study

Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.

Abstract:

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1602
1690 Rotary Machine Sealing Oscillation Frequencies and Phase Shift Analysis

Authors: Liliia N. Butymova, Vladimir Ya Modorskii

Abstract:

To ensure the gas transmittal GCU's efficient operation, leakages through the labyrinth packings (LP) should be minimized. Leakages can be minimized by decreasing the LP gap, which in turn depends on thermal processes and possible rotor vibrations and is designed to ensure absence of mechanical contact. Vibration mitigation allows to minimize the LP gap. It is advantageous to research influence of processes in the dynamic gas-structure system on LP vibrations. This paper considers influence of rotor vibrations on LP gas dynamics and influence of the latter on the rotor structure within the FSI unidirectional dynamical coupled problem. Dependences of nonstationary parameters of gas-dynamic process in LP on rotor vibrations under various gas speeds and pressures, shaft rotation speeds and vibration amplitudes, and working medium features were studied. The programmed multi-processor ANSYS CFX was chosen as a numerical computation tool. The problem was solved using PNRPU high-capacity computer complex. Deformed shaft vibrations are replaced with an unyielding profile that moves in the fixed annulus "up-and-down" according to set harmonic rule. This solves a nonstationary gas-dynamic problem and determines time dependence of total gas-dynamic force value influencing the shaft. Pressure increase from 0.1 to 10 MPa causes growth of gas-dynamic force oscillation amplitude and frequency. The phase shift angle between gas-dynamic force oscillations and those of shaft displacement decreases from 3π/4 to π/2. Damping constant has maximum value under 1 MPa pressure in the gap. Increase of shaft oscillation frequency from 50 to 150 Hz under P=10 MPa causes growth of gas-dynamic force oscillation amplitude. Damping constant has maximum value at 50 Hz equaling 1.012. Increase of shaft vibration amplitude from 20 to 80 µm under P=10 MPa causes the rise of gas-dynamic force amplitude up to 20 times. Damping constant increases from 0.092 to 0.251. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the minimum gas-dynamic force persistent oscillating amplitude under P=0.1 MPa being observed in methane, and maximum in the air. Frequency remains almost unchanged and the phase shift in the air changes from 3π/4 to π/2. Calculations for various working substances (methane, perfect gas, air at 25 ˚С) prove the maximum gas-dynamic force oscillating amplitude under P=10 MPa being observed in methane, and minimum in the air. Air demonstrates surging. Increase of leakage speed from 0 to 20 m/s through LP under P=0.1 MPa causes the gas-dynamic force oscillating amplitude to decrease by 3 orders and oscillation frequency and the phase shift to increase 2 times and stabilize. Increase of leakage speed from 0 to 20 m/s in LP under P=1 MPa causes gas-dynamic force oscillating amplitude to decrease by almost 4 orders. The phase shift angle increases from π/72 to π/2. Oscillations become persistent. Flow rate proved to influence greatly on pressure oscillations amplitude and a phase shift angle. Work medium influence depends on operation conditions. At pressure growth, vibrations are mostly affected in methane (of working substances list considered), and at pressure decrease, in the air at 25 ˚С.

Keywords: Aeroelasticity, labyrinth packings, oscillation phase shift, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
1689 On a Class of Inverse Problems for Degenerate Differential Equations

Authors: Fadi Awawdeh, H.M. Jaradat

Abstract:

In this paper, we establish existence and uniqueness of solutions for a class of inverse problems of degenerate differential equations. The main tool is the perturbation theory for linear operators.

Keywords: Inverse Problem, Degenerate Differential Equations, Perturbation Theory for Linear Operators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1688 Development of Map of Gridded Basin Flash Flood Potential Index: GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue Provinces

Authors: Le Xuan Cau

Abstract:

Flash flood is occurred in short time rainfall interval: from 1 hour to 12 hours in small and medium basins. Flash floods typically have two characteristics: large water flow and big flow velocity. Flash flood is occurred at hill valley site (strip of lowland of terrain) in a catchment with large enough distribution area, steep basin slope, and heavy rainfall. The risk of flash floods is determined through Gridded Basin Flash Flood Potential Index (GBFFPI). Flash Flood Potential Index (FFPI) is determined through terrain slope flash flood index, soil erosion flash flood index, land cover flash floods index, land use flash flood index, rainfall flash flood index. Determining GBFFPI, each cell in a map can be considered as outlet of a water accumulation basin. GBFFPI of the cell is determined as basin average value of FFPI of the corresponding water accumulation basin. Based on GIS, a tool is developed to compute GBFFPI using ArcObjects SDK for .NET. The maps of GBFFPI are built in two types: GBFFPI including rainfall flash flood index (real time flash flood warning) or GBFFPI excluding rainfall flash flood index. GBFFPI Tool can be used to determine a high flash flood potential site in a large region as quick as possible. The GBFFPI is improved from conventional FFPI. The advantage of GBFFPI is that GBFFPI is taking into account the basin response (interaction of cells) and determines more true flash flood site (strip of lowland of terrain) while conventional FFPI is taking into account single cell and does not consider the interaction between cells. The GBFFPI Map of QuangNam, QuangNgai, DaNang, Hue is built and exported to Google Earth. The obtained map proves scientific basis of GBFFPI.

Keywords: ArcObjects SDK for .NET, Basin average value of FFPI, Gridded basin flash flood potential index, GBFFPI map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1687 Completion Latin Square for Wavelength Routing

Authors: Ali Habiboghli, Rouhollah Mostafaei, Vasif Nabiyev

Abstract:

Optical network uses a tool for routing called Latin router. These routers use particular algorithms for routing. For example, we can refer to LDF algorithm that uses backtracking (one of CSP methods) for problem solving. In this paper, we proposed new approached for completion routing table (DRA&CRA algorithm) and compare with pervious proposed ways and showed numbers of backtracking, blocking and run time for DRA algorithm less than LDF and CRA algorithm.

Keywords: Latin Router, Constraint Satisfaction Problem, Wavelength Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
1686 Discrete Vector Control for Induction Motor Drives with the Rotor Time Constant Update

Authors: A.Larabi, M.S. Boucherit

Abstract:

In this paper, we investigated vector control of an induction machine taking into account discretization problems of the command. In the purpose to show how to include in a discrete model of this current control and with rotor time constant update. The results of simulation obtained are very satisfaisant. That was possible thanks to the good choice of the values of the parameters of the regulators used which shows, the founded good of the method used, for the choice of the parameters of the discrete regulators. The simulation results are presented at the end of this paper.

Keywords: Induction motor, discrete vector control, PIRegulator, transformation of park, PWM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
1685 Security Risk Analysis Based on the Policy Formalization and the Modeling of Big Systems

Authors: Luc Cessieux, French Navy, Adrien Derock, DCNS/IMATH

Abstract:

Security risk models have been successful in estimating the likelihood of attack for simple security threats. However, modeling complex system and their security risk is even a challenge. Many methods have been proposed to face this problem. Often difficult to manipulate, and not enough all-embracing they are not as famous as they should with administrators and deciders. We propose in this paper a new tool to model big systems on purpose. The software, takes into account attack threats and security strength.

Keywords: Security, risk management, threat, modelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
1684 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
1683 Knitting Stitches’ Manipulation for Catenary Textile Structures

Authors: Virginia Melnyk

Abstract:

This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.

Keywords: Architectural materials, catenary structures, knitting fabrication, textile design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 824
1682 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, depth estimation, deep neural networks, CNN

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 693
1681 Combining Diverse Neural Classifiers for Complex Problem Solving: An ECOC Approach

Authors: R. Ebrahimpour, M. Abbasnezhad Arabi, H. Babamiri Moghaddam

Abstract:

Combining classifiers is a useful method for solving complex problems in machine learning. The ECOC (Error Correcting Output Codes) method has been widely used for designing combining classifiers with an emphasis on the diversity of classifiers. In this paper, in contrast to the standard ECOC approach in which individual classifiers are chosen homogeneously, classifiers are selected according to the complexity of the corresponding binary problem. We use SATIMAGE database (containing 6 classes) for our experiments. The recognition error rate in our proposed method is %10.37 which indicates a considerable improvement in comparison with the conventional ECOC and stack generalization methods.

Keywords: Error correcting output code, combining classifiers, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1680 Fine-Grained Sentiment Analysis: Recent Progress

Authors: Jie Liu, Xudong Luo, Pingping Lin, Yifan Fan

Abstract:

Facebook, Twitter, Weibo, and other social media and significant e-commerce sites generate a massive amount of online texts, which can be used to analyse people’s opinions or sentiments for better decision-making. So, sentiment analysis, especially the fine-grained sentiment analysis, is a very active research topic. In this paper, we survey various methods for fine-grained sentiment analysis, including traditional sentiment lexicon-based methods, ma-chine learning-based methods, and deep learning-based methods in aspect/target/attribute-based sentiment analysis tasks. Besides, we discuss their advantages and problems worthy of careful studies in the future.

Keywords: sentiment analysis, fine-grained, machine learning, deep learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
1679 An Empirical Analysis of Arabic WebPages Classification using Fuzzy Operators

Authors: Ahmad T. Al-Taani, Noor Aldeen K. Al-Awad

Abstract:

In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.

Keywords: Text classification, HTML documents, Web pages, Machine learning, Fuzzy logic, Arabic Web pages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
1678 Stabilization of a New Configurable Two- Wheeled Machine Using a PD-PID and a Hybrid FL Control Strategies: A Comparative Study

Authors: M. Almeshal, M. O. Tokhi, K. M. Goher

Abstract:

A novel design of two-wheeled robotic vehicle with moving payload is presented in this paper. A mathematical model describing the vehicle dynamics is derived and simulated in Matlab Simulink environment. Two control strategies were developed to stabilise the vehicle in the upright position. A robust Proportional- Integral-Derivative (PID) control strategy has been implemented and initially tested to measure the system performance, while the second control strategy is to use a hybrid fuzzy logic controller (FLC). The results are given on a comparative basis for the system performance in terms of disturbance rejection, control algorithms robustness as well as the control effort in terms of input torque.

Keywords: double inverted pendulum, modelling, robust control, simulation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
1677 Study of the Appropriate Factors for Laminated Bamboo Bending by Design of Experiments

Authors: Vanchai Laemlaksakul, Sompoap Talabgaew

Abstract:

This research studied the appropriate factors and conditions for laminated bamboo bending by Design of Experiments (DOE). The interested factors affecting the spring back in laminates bamboo were (1) time, (2) thickness, and (3) frequency. This experiment tested the specimen by using high frequency machine and measured its spring back immediately and next 24 hours for comparing the spring back ratio. Results from the experiments showed that significant factors having major influence to bending of laminates bamboo were thickness and frequency. The appropriate conditions of thickness and frequency were 4 mm. and 1.5 respectively.

Keywords: Bamboo, bending, spring back, design of experiments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
1676 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: Asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
1675 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1674 Eclectic Rule-Extraction from Support Vector Machines

Authors: Nahla Barakat, Joachim Diederich

Abstract:

Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.

Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1707
1673 A Comparative Study of Web-pages Classification Methods using Fuzzy Operators Applied to Arabic Web-pages

Authors: Ahmad T. Al-Taani, Noor Aldeen K. Al-Awad

Abstract:

In this study, a fuzzy similarity approach for Arabic web pages classification is presented. The approach uses a fuzzy term-category relation by manipulating membership degree for the training data and the degree value for a test web page. Six measures are used and compared in this study. These measures include: Einstein, Algebraic, Hamacher, MinMax, Special case fuzzy and Bounded Difference approaches. These measures are applied and compared using 50 different Arabic web-pages. Einstein measure was gave best performance among the other measures. An analysis of these measures and concluding remarks are drawn in this study.

Keywords: Text classification, HTML, web pages, machine learning, fuzzy logic, Arabic web pages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235