Search results for: power efficiency characteristics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7099

Search results for: power efficiency characteristics.

6049 Exploration and Exploitation within Operations

Authors: D. Gåsvaer, L. Stålberg, A. Fundin, M. Jackson, P. Johansson

Abstract:

Exploration and exploitation capabilities are both important within Operations as means for improvement when managed separately, and for establishing dynamic improvement capabilities when combined in balance. However, it is unclear what exploration and exploitation capabilities imply in improvement and development work within an Operations context. So, in order to better understand how to develop exploration and exploitation capabilities within Operations, the main characteristics of these constructs needs to be identified and further understood. Thus, the objective of this research is to increase the understanding about exploitation and exploration characteristics, to concretize what they translates to within the context of improvement and development work in an Operations unit, and to identify practical challenges. A literature review and a case study are presented. In the literature review, different interpretations of exploration and exploitation are portrayed, key characteristics have been identified, and a deepened understanding of exploration and exploitation characteristics is described. The case in the study is an Operations unit, and the aim is to explore to what extent and in what ways exploration and exploitation activities are part of the improvement structures and processes. The contribution includes an identification of key characteristics of exploitation and exploration, as well as an interpretation of the constructs. Further, some practical challenges are identified. For instance, exploration activities tend to be given low priority, both in daily work as in the manufacturing strategy. Also, the overall understanding about the concepts of exploitation and exploration (or any similar aspect of dynamic improvement capabilities) is very low.

Keywords: Exploitation, Exploration, Improvement, Lean production, Manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
6048 A Study of Behavioral Phenomena Using ANN

Authors: Yudhajit Datta

Abstract:

Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.

Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
6047 Assessment of Solar Hydrogen Production in an Energetic Hybrid PV-PEMFC System

Authors: H. Rezzouk, M. Hatti, H. Rahmani, S. Atoui

Abstract:

This paper discusses the design and analysis of a hybrid PV-Fuel cell energy system destined to power a DC load. The system is composed of a photovoltaic array, a fuel cell, an electrolyzer and a hydrogen tank. HOMER software is used in this study to calculate the optimum capacities of the power system components that their combination allows an efficient use of solar resource to cover the hourly load needs. The optimal system sizing allows establishing the right balance between the daily electrical energy produced by the power system and the daily electrical energy consumed by the DC load using a 28 KW PV array, a 7.5 KW fuel cell, a 40KW electrolyzer and a 270 Kg hydrogen tank. The variation of powers involved into the DC bus of the hybrid PV-fuel cell system has been computed and analyzed for each hour over one year: the output powers of the PV array and the fuel cell, the input power of the elctrolyzer system and the DC primary load. Equally, the annual variation of stored hydrogen produced by the electrolyzer has been assessed. The PV array contributes in the power system with 82% whereas the fuel cell produces 18%. 38% of the total energy consumption belongs to the DC primary load while the rest goes to the electrolyzer.

Keywords: Electrolyzer, Hydrogen, Hydrogen Fueled Cell, Photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
6046 A Life Cycle Assessment (LCA) of Aluminum Production Process

Authors: Alaa Al Hawari, Mohammad Khader, Wael El Hasan, Mahmoud Alijla, Ammar Manawi, Abdelbaki Benamour

Abstract:

The production of aluminum alloys and ingots – starting from the processing of alumina to aluminum, and the final cast product – was studied using a Life Cycle Assessment (LCA) approach. The studied aluminum supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminum metal were investigated. The impact of the aluminum production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it come to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant.

Keywords: Life cycle assessment, aluminum production, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4647
6045 Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

Authors: Gilberto Gonzalez-A, Dunia Nuñez-P

Abstract:

Bond graph models of an electrical transformer including the nonlinear saturation are presented. The transformer using electrical and magnetic circuits are modelled. These models determine the relation between self and mutual inductances, and the leakage and magnetizing inductances of power transformers with two windings using the properties of a bond graph. The equivalence between electrical and magnetic variables is given. The modelling and analysis using this methodology to three phase power transformers can be extended.

Keywords: Bond graph, electrical transformer, magnetic circuits, nonlinear saturation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4582
6044 Economic Efficiency of Cassava Production in Nimba County, Liberia: An Output-Oriented Approach

Authors: Kollie B. Dogba, Willis Oluoch-Kosura, Chepchumba Chumo

Abstract:

In Liberia, many of the agricultural households cultivate cassava for either sustenance purposes, or to generate farm income. Many of the concentrated cassava farmers reside in Nimba, a north-eastern County that borders two other economies: the Republics of Cote D’Ivoire and Guinea. With a high demand for cassava output and products in emerging Asian markets coupled with an objective of the Liberia agriculture policies to increase the competitiveness of valued agriculture crops; there is a need to examine the level of resource-use efficiency for many agriculture crops. However, there is a scarcity of information on the efficiency of many agriculture crops, including cassava. Hence the study applying an output-oriented method seeks to assess the economic efficiency of cassava farmers in Nimba County, Liberia. A multi-stage sampling technique was employed to generate a sample for the study. From 216 cassava farmers, data related to on-farm attributes, socio-economic and institutional factors were collected. The stochastic frontier models, using the Translog functional forms, of production and revenue, were used to determine the level of revenue efficiency and its determinants. The result showed that most of the cassava farmers are male (60%). Many of the farmers are either married, engaged or living together with a spouse (83%), with a mean household size of nine persons. Farmland is prevalently obtained by inheritance (95%), average farm size is 1.34 hectares, and most cassava farmers did not access agriculture credits (76%) and extension services (91%). The mean cassava output per hectare is 1,506.02 kg, which estimates average revenue of L$23,551.16 (Liberian dollars). Empirical results showed that the revenue efficiency of cassava farmers varies from 0.1% to 73.5%; with the mean revenue efficiency of 12.9%. This indicates that on average, there is a vast potential of 87.1% to increase the economic efficiency of cassava farmers in Nimba by improving technical and allocative efficiencies. For the significant determinants of revenue efficiency, age and group membership had negative effects on revenue efficiency of cassava production; while farming experience, access to extension, formal education, and average wage rate have positive effects. The study recommends the setting-up and incentivizing of farmer field schools for cassava farmers to primarily share their farming experiences with others and to learn robust cultivation techniques of sustainable agriculture. Also, farm managers and farmers should consider a fix wage rate in labor contracts for all stages of cassava farming.

Keywords: Economic efficiency, frontier production, and revenue functions, Liberia, Nimba County, output-oriented, revenue efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 699
6043 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility

Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez

Abstract:

Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.

Keywords: Solar energy, heliostat, wireless communication, intelligent node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
6042 Under the Veneer of Words Lies Power: Foucauldian Analysis of Oleanna

Authors: D. Arjmandi

Abstract:

The notion of power and gender domination is one of the inseparable aspects of themes in postmodern literature. The reason of its importance has been discussed frequently since the rise of Michel Foucault and his insight into the circulation of power and the transgression of forces. Language and society operate as the basic grounds for the study, as all human beings are bound to the set of rules and norms which shape them in the acceptable way in the macrocosm. How different genders in different positions behave and show reactions to the provocation of social forces and superiority of one another is of great interest to writers and literary critics. Mamet’s works are noticeable for their controversial but timely themes which illustrate human conflicts with the society and greed for power. Many critics like Christopher Bigsby and Harold Bloom have discussed Mamet and his ideas in recent years. This paper is the study of Oleanna, Mamet’s masterpiece about the teacher-student relationship and the circulation of power between a man and woman. He shows the very breakable boundaries in the domination of a gender and the downfall of speech as the consequence of transgression and freedom. The failure of the language the teacher uses and the abuse of his own words by a student who seeks superiority and knowledge are the main subjects of the discussion. Supported by the ideas of Foucault, the language Mamet uses to present his characters becomes the fundamental premise in this study. As a result, language becomes both the means of achievement and downfall.

Keywords: Domination, foucault, language, mamet, oleanna, power, transgression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
6041 Evaluation of the Effect of Rotor Solidity on the Performance of a H-Darrieus Turbine Adopting a Blade Element-Momentum Algorithm

Authors: G. Bedon, M. Raciti Castelli, E. Benini

Abstract:

The present study aims to evaluating the effect of rotor solidity - in terms of chord length for a given rotor diameter - on the performances of a small vertical axis Darrieus wind turbine. The proposed work focuses on both power production and rotor power coefficient, considering also the structural constraints deriving from the centrifugal forces due to rotor angular velocity. Also the smoothness of the resulting power curves have been investigated, in order to evaluate the controllability of the corresponding rotor architectures.

Keywords: Vertical axis wind turbine, Darrieus, solidity, Blade Element-Momentum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5968
6040 Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant

Authors: M. Azadi, N. Tahouni, M. H. Panjeshahi

Abstract:

A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years.

Keywords: Energy saving, Gas turbine, Methanol, Power generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
6039 Technique for Online Condition Monitoring of Surge Arrestors

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Lightning overvoltage phenomenon in power systems cannot be avoided; however, it can be controlled to certain extent. To prevent system failure, power system equipment must be protected against overvoltage. Metal Oxide Surge Arrestors (MOSA) are connected in the system to provide protection against overvoltages. Under normal working conditions, MOSA function as, insulators, offering a conductive path during overvoltage events. MOSA consists of zinc oxide elements (ZnO Blocks) which has non-linear V-I characteristics. The ZnO blocks are connected in series and fitted in ceramic or polymer housing. Over time, these components degrade due to continuous operation. The degradation of zinc oxide elements increases the leakage current flowing through the surge arrestors. This increased leakage current results in elevated temperatures within the surge arrester, further decreasing the resistance of the zinc oxide elements. Consequently, the leakage current increases, leading to higher temperatures within the MOSA. This cycle creates thermal runaway conditions for the MOSA. Once a surge arrester reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arrestors. Given that MOSA constitutes a core protective device for electrical power systems against transients, it contributes significantly to the reliable operation of power system networks. Therefore, periodic condition monitoring of surge arrestors is essential. Both online and offline condition monitoring techniques are available for surge arrestors. Offline condition monitoring techniques are not as popular because they require the removal of surge arrestors from the system, which requires system shutdown. Therefore, online condition monitoring techniques are more commonly used. This paper presents an evaluation technique for the surge arrester condition based on leakage current analysis. The maximum amplitudes of total leakage current (IT), fundamental resistive leakage current (IR), and third harmonic resistive leakage current (I3rd) are analyzed as indicators for surge arrester condition monitoring.

Keywords: Metal Oxide Surge Arrester, MOSA, Over voltage, total leakage current, resistive leakage current, third harmonic resistive leakage current, capacitive leakage current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85
6038 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
6037 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters

Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan

Abstract:

The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.

Keywords: Black Sea, Buoys, Hydraulic Power Take-Off System, Wave Energy Converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
6036 An Optimal Load Shedding Approach for Distribution Networks with DGs considering Capacity Deficiency Modelling of Bulked Power Supply

Authors: A. R. Malekpour, A.R. Seifi

Abstract:

This paper discusses a genetic algorithm (GA) based optimal load shedding that can apply for electrical distribution networks with and without dispersed generators (DG). Also, the proposed method has the ability for considering constant and variable capacity deficiency caused by unscheduled outages in the bulked generation and transmission system of bulked power supply. The genetic algorithm (GA) is employed to search for the optimal load shedding strategy in distribution networks considering DGs in two cases of constant and variable modelling of bulked power supply of distribution networks. Electrical power distribution systems have a radial network and unidirectional power flows. With the advent of dispersed generations, the electrical distribution system has a locally looped network and bidirectional power flows. Therefore, installed DG in the electrical distribution systems can cause operational problems and impact on existing operational schemes. Introduction of DGs in electrical distribution systems has introduced many new issues in operational and planning level. Load shedding as one of operational issue has no exempt. The objective is to minimize the sum of curtailed load and also system losses within the frame-work of system operational and security constraints. The proposed method is tested on a radial distribution system with 33 load points for more practical applications.

Keywords: DG, Load shedding, Optimization, Capacity Deficiency Modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
6035 Thermo-chemical Characteristics of Powder Fabricated by Oxidation of Spent PWR Fuel

Authors: Geun-Il Park, Jae-Won Lee, Dou-Youn Lee, Jung-Won Lee, Kwang-Wook Kim, Kee-Chan Song

Abstract:

Thermochemcial characteristics of powder fabricated using oxidation treatment of spent PWR fuel and SIMFUEL were evaluated for recycling of spent fuel such as DUPIC process. Especially, the influence of spent fuel burn-ups on the powder fabrication characteristics was experimentally evaluated, ranging from 27,300 to 65,000 MWd/tU. Densities of powder manufactured from an oxidation, OREOX and the milling processes at the same process conditions were compared as a function of the fuel burn-ups respectively. Also, based on chemical analysis results, homogeneity of fissile elements in oxidized powder was confirmed.

Keywords: Spent PWR fuel, DUPIC, Oxidation, OREOX, Powder, Chemical analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
6034 Designing of a Non-Zero Dispersion Shifted Fiber with Ultra-High Birefringence and High Non-Linearity

Authors: Shabbir Chowdhury, Japatosh Mondal

Abstract:

Photonic Crystal Fiber (PCF) uses are no longer limited to telecommunication only rather it is now used for many sensors-based fiber optics application, medical science, space application and so on. In this paper, the authors have proposed a microstructure PCF that is designed by using Finite Element Method (FEM) based software. Besides designing, authors have discussed the necessity of the characteristics that it poses for some specified applications because it is not possible to have all good characteristics from a single PCF. Proposed PCF shows the property of ultra-high birefringence (0.0262 at 1550 nm) which is more useful for sensor based on fiber optics. The non-linearity of this fiber is 50.86 w-1km-1 at 1550 nm wavelength which is very high to guide the light through the core tightly. For Perfectly Matched Boundary Layer (PML), 0.6 μm diameter is taken. This design will offer the characteristics of Nonzero-Dispersion-Shifted Fiber (NZ-DSF) for 450 nm waveband. Since it is a software-based design and no practical evaluation has made, 2% tolerance is checked and the authors have found very small variation of the characteristics.

Keywords: Chromatic dispersion, birefringence, NZ-DSF, FEM, non-linear coefficient, DCF, waveband.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486
6033 Energy Policy in Nigeria: Prospects and Challenges

Authors: N. Garba, A. Adamu, A. I. Augie

Abstract:

Energy is the major force that drives any country`s socio-economic development. Without electricity, the country could be at risk of losing many potential investors. As such, good policy implementation could play a significant role in harnessing all the available energy resources. Nigeria has the prospects of meeting its energy demand and supply if there are good policies and proper implementation of them. The current energy supply needs to improve in order to meet the present and future demand. Sustainable energy development is the way forward. Renewable energy plays a significant role in socio-economic development of any country. Nigeria is a country blessed with abundant natural resources such as, solar radiation for solar power, water for hydropower, wind for wind power, and biomass from both plants and animal’s waste. Both conventional energy (fossil fuel) and unconventional energy (renewable) could be harmonized like in the case of energy mix or biofuels. Biofuels like biodiesel could be produced from biomass and combined with petro-diesel in different ratios. All these can be achieved if good policy is in place. The challenges could be well overcome with good policy, masses awareness, technological knowledge and other incentives that can attract investors in Nigerian energy sector.

Keywords: Nigeria, renewable energy, Renewable Energy and Efficiency Partnership, Rural Electrification Agency, International Renewable Energy Agency, ECOWAS, Energy Commission of Nigeria

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
6032 Neural Network Optimal Power Flow(NN-OPF) based on IPSO with Developed Load Cluster Method

Authors: Mat Syai'in, Adi Soeprijanto

Abstract:

An Optimal Power Flow based on Improved Particle Swarm Optimization (OPF-IPSO) with Generator Capability Curve Constraint is used by NN-OPF as a reference to get pattern of generator scheduling. There are three stages in Designing NN-OPF. The first stage is design of OPF-IPSO with generator capability curve constraint. The second stage is clustering load to specific range and calculating its index. The third stage is training NN-OPF using constructive back propagation method. In training process total load and load index used as input, and pattern of generator scheduling used as output. Data used in this paper is power system of Java-Bali. Software used in this simulation is MATLAB.

Keywords: Optimal Power Flow, Generator Capability Curve, Improved Particle Swarm Optimization, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
6031 Contribution to the Study and Optimal Exploitation of a Solar Power System for a Semi-Arid Zone (Case Study: Ferkene, Algeria)

Authors: D. Dib, W. Guebabi, M. B. Guesmi

Abstract:

The objective of this paper is a contribution to a study of power supply by solar energy system called a common Ferkène north of Algerian desert in the semi-arid area. The optimal exploitation of the system, goes through stages of study and essential design, the choice of the model of the photovoltaic panel, the study of behavior with all the parameters involved in simulation before fixing the trajectory tracking the maximum point the power to extract (MPPT), form the essential platform to shape the design of the solar system set up to supply the town Ferkène without considering the grid. The identification of the common Ferkène by the collection of geographical, meteorological, demographic and electrical provides a basis uniform and important data. The results reflect a valid fictive model for any attempt to study and design a solar system to supply an arid or semi-arid zone by electrical energy from photovoltaic panels.

Keywords: Solar power, photovoltaic panel, Boost converter, supply, design, electric power, Ferkène, Algeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
6030 CFD Analysis on Aerodynamic Design Optimization of Wind Turbine Rotor Blades

Authors: R.S. Amano, R.J. Malloy

Abstract:

Wind energy has been shown to be one of the most viable sources of renewable energy. With current technology, the low cost of wind energy is competitive with more conventional sources of energy such as coal. Most blades available for commercial grade wind turbines incorporate a straight span-wise profile and airfoil shaped cross sections. These blades are found to be very efficient at lower wind speeds in comparison to the potential energy that can be extracted. However as the oncoming wind speed increases the efficiency of the blades decreases as they approach a stall point. This paper explores the possibility of increasing the efficiency of the blades at higher wind speeds while maintaining efficiency at the lower wind speeds. The design intends to maintain efficiency at lower wind speeds by selecting the appropriate orientation and size of the airfoil cross sections based on a low oncoming wind speed and given constant rotation rate. The blades will be made more efficient at higher wind speeds by implementing a swept blade profile. Performance was investigated using the computational fluid dynamics (CFD).

Keywords: CFD, wind turbine blade, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3806
6029 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182
6028 SVC and DSTATCOM Comparison for Voltage Improvement in RDS Using ANFIS

Authors: U. Ramesh Babu, V. Vijaya Kumar Reddy, S. Tara Kalyani

Abstract:

This paper investigates the performance comparison of SVC (Static VAR Compensator) and DSTATCOM (Distribution Static Synchronous Compensator) to improve voltage stability in Radial Distribution System (RDS) which are efficient FACTS (Flexible AC Transmission System) devices that are capable of controlling the active and reactive power flows in a power system line by appropriately controlling parameters using ANFIS. Simulations are carried out in MATLAB/Simulink environment for the IEEE-4 bus system to test the ability of increasing load. It is found that these controllers significantly increase the margin of load in the power systems.

Keywords: SVC, DSTATCOM, voltage improvement, ANFIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1383
6027 Distributed GIS Based Decision Support System for Efficiency Evaluation of Education System: A Case Study of Primary School Education System of Bundelkhand Zone, Uttar Pradesh, India

Authors: Garima Srivastava, R. K. Srivastava, R. C. Vaishya

Abstract:

Decision Support System (DSS), a query-based system meant to help decision makers to use a variety of information for decision making, plays a very vital role in sustainable growth of any country. For this very purpose it is essential to analyze the educational system because education is the only way through which people can be made aware as to how to sustain our planet. The purpose of this paper is to prepare a decision support system for efficiency evaluation of education system with the help of Distributed Geographical Information System.

Keywords: Distributed GIS, Web GIS, Spatial Decision Support System, Bundelkhand Zone, Efficiency, Primary School Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564
6026 Disturbances of the Normal Operation of Kosovo Power System Regarding Atmospheric Discharges

Authors: B. Prebreza, I. Krasniqi, G. Kabashi, G. Pula, N. Avdiu

Abstract:

This paper discusses aspects of outages in the electric transmission network in the Kosovo Power System caused by the atmospheric discharges.

Frequency and location of the atmospheric discharges in Kosovo territory will be provided by a lightning location system ALARM (Automated Lightning Alert and Risk Management) and from the data from the Meteorological Department in Prishtina International Airport. These data will be used to make comparisons with the actual outages registered in the Kosovo Power System from the Kosovo Transmission, systems and market operator (KOSTT) during a specific time period.

The lines with the worst performance determined, regarding the atmospheric discharges, will be choose for further discussions in terms of over voltages caused by the direct or indirect lightning strokes.

Recommendations for protection in terms of insulator coordination and surge arresters will be given at the end and in this stage dynamic simulation will take part.

Keywords: Atmospheric discharges, dynamic simulations, Kosovo Power System, surge arresters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
6025 Improved Modulo 2n +1 Adder Design

Authors: Somayeh Timarchi, Keivan Navi

Abstract:

Efficient modulo 2n+1 adders are important for several applications including residue number system, digital signal processors and cryptography algorithms. In this paper we present a novel modulo 2n+1 addition algorithm for a recently represented number system. The proposed approach is introduced for the reduction of the power dissipated. In a conventional modulo 2n+1 adder, all operands have (n+1)-bit length. To avoid using (n+1)-bit circuits, the diminished-1 and carry save diminished-1 number systems can be effectively used in applications. In the paper, we also derive two new architectures for designing modulo 2n+1 adder, based on n-bit ripple-carry adder. The first architecture is a faster design whereas the second one uses less hardware. In the proposed method, the special treatment required for zero operands in Diminished-1 number system is removed. In the fastest modulo 2n+1 adders in normal binary system, there are 3-operand adders. This problem is also resolved in this paper. The proposed architectures are compared with some efficient adders based on ripple-carry adder and highspeed adder. It is shown that the hardware overhead and power consumption will be reduced. As well as power reduction, in some cases, power-delay product will be also reduced.

Keywords: Modulo 2n+1 arithmetic, residue number system, low power, ripple-carry adders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2904
6024 A Multi-Radio Multi-Channel Unification Power Control for Wireless Mesh Networks

Authors: T. O. Olwal, K. Djouani, B. J. van Wyk, Y. Hamam, P. Siarry

Abstract:

Multi-Radio Multi-Channel Wireless Mesh Networks (MRMC-WMNs) operate at the backbone to access and route high volumes of traffic simultaneously. Such roles demand high network capacity, and long “online" time at the expense of accelerated transmission energy depletion and poor connectivity. This is the problem of transmission power control. Numerous power control methods for wireless networks are in literature. However, contributions towards MRMC configurations still face many challenges worth considering. In this paper, an energy-efficient power selection protocol called PMMUP is suggested at the Link-Layer. This protocol first divides the MRMC-WMN into a set of unified channel graphs (UCGs). A UCG consists of multiple radios interconnected to each other via a common wireless channel. In each UCG, a stochastic linear quadratic cost function is formulated. Each user minimizes this cost function consisting of trade-off between the size of unification states and the control action. Unification state variables come from independent UCGs and higher layers of the protocol stack. The PMMUP coordinates power optimizations at the network interface cards (NICs) of wireless mesh routers. The proposed PMMUP based algorithm converges fast analytically with a linear rate. Performance evaluations through simulations confirm the efficacy of the proposed dynamic power control.

Keywords: Effective band inference based power control algorithm (EBIA), Power Selection MRMC Unification Protocol (PMMUP), MRMC State unification Variable Prediction (MRSUP), Wireless Mesh Networks (WMNs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
6023 Study of Efficiency and Capability LZW++ Technique in Data Compression

Authors: Yusof. Mohd Kamir, Mat Deris. Mohd Sufian, Abidin. Ahmad Faisal Amri

Abstract:

The purpose of this paper is to show efficiency and capability LZWµ in data compression. The LZWµ technique is enhancement from existing LZW technique. The modification the existing LZW is needed to produce LZWµ technique. LZW read one by one character at one time. Differ with LZWµ technique, where the LZWµ read three characters at one time. This paper focuses on data compression and tested efficiency and capability LZWµ by different data format such as doc type, pdf type and text type. Several experiments have been done by different types of data format. The results shows LZWµ technique is better compared to existing LZW technique in term of file size.

Keywords: Data Compression, Huffman Encoding, LZW, LZWµ, RLL, Size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
6022 Highly Efficient Silicon Photomultiplier for Positron Emission Tomography Application

Authors: Fei Sun, Ning Duan, Guo-Qiang Lo

Abstract:

A silicon photomultiplier (SiPM) was designed, fabricated and characterized. The SiPM was based on SACM (Separation of Absorption, Charge and Multiplication) structure, which was optimized for blue light detection in application of positron emission tomography (PET). The achieved SiPM array has a high geometric fill factor of 64% and a low breakdown voltage of about 22V, while the temperature dependence of breakdown voltage is only 17mV/°C. The gain and photon detection efficiency of the device achieved were also measured under illumination of light at 405nm and 460nm wavelengths. The gain of the device is in the order of 106. The photon detection efficiency up to 60% has been observed under 1.8V overvoltage.

Keywords: Photon Detection Efficiency, Positron Emission Tomography, Silicon Photomultiplier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
6021 Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)

Authors: Junfeng Song, Xianshu Luo, Qing Fang, Lianxi Jia, Xiaoguang Tu, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo

Abstract:

We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.

Keywords: ROADM, Optical switch, low power consumption, Integrated devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
6020 Evaluation of Exerting Force on the Heating Surface Due to Bubble Ebullition in Subcooled Flow Boiling

Authors: M. R. Nematollahi

Abstract:

Vibration characteristics of subcooled flow boiling on thin and long structures such as a heating rod were recently investigated by the author. The results show that the intensity of the subcooled boiling-induced vibration (SBIV) was influenced strongly by the conditions of the subcooling temperature, linear power density and flow velocity. Implosive bubble formation and collapse are the main nature of subcooled boiling, and their behaviors are the only sources to originate from SBIV. Therefore, in order to explain the phenomenon of SBIV, it is essential to obtain reliable information about bubble behavior in subcooled boiling conditions. This was investigated at different conditions of coolant subcooling temperatures of 25 to 75°C, coolant flow velocities of 0.16 to 0.53m/s, and linear power densities of 100 to 600 W/cm. High speed photography at 13,500 frames per second was performed at these conditions. The results show that even at the highest subcooling condition, the absolute majority of bubbles collapse very close to the surface after detaching from the heating surface. Based on these observations, a simple model of surface tension and momentum change is introduced to offer a rough quantitative estimate of the force exerted on the heating surface during the bubble ebullition. The formation of a typical bubble in subcooled boiling is predicted to exert an excitation force in the order of 10-4 N.

Keywords: Subcooled boiling, vibration mechanism, bubble behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542