Search results for: approximation algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1857

Search results for: approximation algorithms

807 Meteorological Data Study and Forecasting Using Particle Swarm Optimization Algorithm

Authors: S. Esfandeh, M. Sedighizadeh

Abstract:

Weather systems use enormously complex combinations of numerical tools for study and forecasting. Unfortunately, due to phenomena in the world climate, such as the greenhouse effect, classical models may become insufficient mostly because they lack adaptation. Therefore, the weather forecast problem is matched for heuristic approaches, such as Evolutionary Algorithms. Experimentation with heuristic methods like Particle Swarm Optimization (PSO) algorithm can lead to the development of new insights or promising models that can be fine tuned with more focused techniques. This paper describes a PSO approach for analysis and prediction of data and provides experimental results of the aforementioned method on realworld meteorological time series.

Keywords: Weather, Climate, PSO, Prediction, Meteorological

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
806 A Modified AES Based Algorithm for Image Encryption

Authors: M. Zeghid, M. Machhout, L. Khriji, A. Baganne, R. Tourki

Abstract:

With the fast evolution of digital data exchange, security information becomes much important in data storage and transmission. Due to the increasing use of images in industrial process, it is essential to protect the confidential image data from unauthorized access. In this paper, we analyze the Advanced Encryption Standard (AES), and we add a key stream generator (A5/1, W7) to AES to ensure improving the encryption performance; mainly for images characterised by reduced entropy. The implementation of both techniques has been realized for experimental purposes. Detailed results in terms of security analysis and implementation are given. Comparative study with traditional encryption algorithms is shown the superiority of the modified algorithm.

Keywords: Cryptography, Encryption, Advanced EncryptionStandard (AES), ECB mode, statistical analysis, key streamgenerator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5058
805 Optimal Current Control of Externally Excited Synchronous Machines in Automotive Traction Drive Applications

Authors: Oliver Haala, Bernhard Wagner, Maximilian Hofmann, Martin Marz

Abstract:

The excellent suitability of the externally excited synchronous machine (EESM) in automotive traction drive applications is justified by its high efficiency over the whole operation range and the high availability of materials. Usually, maximum efficiency is obtained by modelling each single loss and minimizing the sum of all losses. As a result, the quality of the optimization highly depends on the precision of the model. Moreover, it requires accurate knowledge of the saturation dependent machine inductances. Therefore, the present contribution proposes a method to minimize the overall losses of a salient pole EESM and its inverter in steady state operation based on measurement data only. Since this method does not require any manufacturer data, it is well suited for an automated measurement data evaluation and inverter parametrization. The field oriented control (FOC) of an EESM provides three current components resp. three degrees of freedom (DOF). An analytic minimization of the copper losses in the stator and the rotor (assuming constant inductances) is performed and serves as a first approximation of how to choose the optimal current reference values. After a numeric offline minimization of the overall losses based on measurement data the results are compared to a control strategy that satisfies cos (ϕ) = 1.

Keywords: Current control, efficiency, externally excited synchronous machine, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4395
804 Metaheuristics Methods (GA and ACO) for Minimizing the Length of Freeman Chain Code from Handwritten Isolated Characters

Authors: Dewi Nasien, Habibollah Haron, Siti SophiayatiYuhaniz

Abstract:

This paper presents a comparison of metaheuristic algorithms, Genetic Algorithm (GA) and Ant Colony Optimization (ACO), in producing freeman chain code (FCC). The main problem in representing characters using FCC is the length of the FCC depends on the starting points. Isolated characters, especially the upper-case characters, usually have branches that make the traversing process difficult. The study in FCC construction using one continuous route has not been widely explored. This is our motivation to use the population-based metaheuristics. The experimental result shows that the route length using GA is better than ACO, however, ACO is better in computation time than GA.

Keywords: Handwriting Recognition, Feature Extraction, Freeman Chain Code, Genetic Algorithm and Ant ColonyOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
803 Advanced Convolutional Neural Network Paradigms-Comparison of VGG16 with Resnet50 in Crime Detection

Authors: Taiwo. M. Akinmuyisitan, John Cosmas

Abstract:

This paper practically demonstrates the theories and concepts of an Advanced Convolutional Neural Network in the design and development of a scalable artificial intelligence model for the detection of criminal masterminds. The technique uses machine vision algorithms to compute the facial characteristics of suspects and classify actors as criminal or non-criminal faces. The paper proceeds further to compare the results of the error accuracy of two popular custom convolutional pre-trained networks, VGG16 and Resnet50. The result shows that VGG16 is probably more efficient than ResNet50 for the dataset we used.

Keywords: Artificial intelligence, convolutional neural networks, Resnet50, VGG16.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283
802 Multimodal Biometric Authentication Using Choquet Integral and Genetic Algorithm

Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara

Abstract:

The Choquet integral is a tool for the information fusion that is very effective in the case where fuzzy measures associated with it are well chosen. In this paper, we propose a new approach for calculating fuzzy measures associated with the Choquet integral in a context of data fusion in multimodal biometrics. The proposed approach is based on genetic algorithms. It has been validated in two databases: the first base is relative to synthetic scores and the second one is biometrically relating to the face, fingerprint and palmprint. The results achieved attest the robustness of the proposed approach.

Keywords: Multimodal biometrics, data fusion, Choquet integral, fuzzy measures, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2516
801 A Hybrid Neural Network and Traditional Approach for Forecasting Lumpy Demand

Authors: A. Nasiri Pour, B. Rostami Tabar, A.Rahimzadeh

Abstract:

Accurate demand forecasting is one of the most key issues in inventory management of spare parts. The problem of modeling future consumption becomes especially difficult for lumpy patterns, which characterized by intervals in which there is no demand and, periods with actual demand occurrences with large variation in demand levels. However, many of the forecasting methods may perform poorly when demand for an item is lumpy. In this study based on the characteristic of lumpy demand patterns of spare parts a hybrid forecasting approach has been developed, which use a multi-layered perceptron neural network and a traditional recursive method for forecasting future demands. In the described approach the multi-layered perceptron are adapted to forecast occurrences of non-zero demands, and then a conventional recursive method is used to estimate the quantity of non-zero demands. In order to evaluate the performance of the proposed approach, their forecasts were compared to those obtained by using Syntetos & Boylan approximation, recently employed multi-layered perceptron neural network, generalized regression neural network and elman recurrent neural network in this area. The models were applied to forecast future demand of spare parts of Arak Petrochemical Company in Iran, using 30 types of real data sets. The results indicate that the forecasts obtained by using our proposed mode are superior to those obtained by using other methods.

Keywords: Lumpy Demand, Neural Network, Forecasting, Hybrid Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680
800 The Locker Problem with Empty Lockers

Authors: David Avis, Luc Devroye, Kazuo Iwama

Abstract:

We consider a cooperative game played by n players against a referee. The players names are randomly distributed among n lockers, with one name per locker. Each player can open up to half the lockers and each player must find his name. Once the game starts the players may not communicate. It has been previously shown that, quite surprisingly, an optimal strategy exists for which the success probability is never worse than 1 − ln 2 ≈ 0.306. In this paper we consider an extension where the number of lockers is greater than the number of players, so that some lockers are empty. We show that the players may still win with positive probability even if there are a constant k number of empty lockers. We show that for each fixed probability p, there is a constant c so that the players can win with probability at least p if they are allowed to open cn lockers.

Keywords: Locker problem, pointer-following algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1293
799 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images

Authors: Mario Mastriani

Abstract:

This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.

Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
798 A New Evolutionary Algorithm for Cluster Analysis

Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour

Abstract:

Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.

Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
797 A New Scheduling Algorithm Based on Traffic Classification Using Imprecise Computation

Authors: Farzad Abtahi, Sahar Khanmohamadi, Bahram Sadeghi Bigham

Abstract:

Wireless channels are characterized by more serious bursty and location-dependent errors. Many packet scheduling algorithms have been proposed for wireless networks to guarantee fairness and delay bounds. However, most existing schemes do not consider the difference of traffic natures among packet flows. This will cause the delay-weight coupling problem. In particular, serious queuing delays may be incurred for real-time flows. In this paper, it is proposed a scheduling algorithm that takes traffic types of flows into consideration when scheduling packets and also it is provided scheduling flexibility by trading off video quality to meet the playback deadline.

Keywords: Data communication, Real-time, Scheduling, Video transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
796 MovieReco: A Recommendation System

Authors: Dipankaj G Medhi, Juri Dakua

Abstract:

Recommender Systems act as personalized decision guides, aiding users in decisions on matters related to personal taste. Most previous research on Recommender Systems has focused on the statistical accuracy of the algorithms driving the systems, with no emphasis on the trustworthiness of the user. RS depends on information provided by different users to gather its knowledge. We believe, if a large group of users provide wrong information it will not be possible for the RS to arrive in an accurate conclusion. The system described in this paper introduce the concept of Testing the knowledge of user to filter out these “bad users". This paper emphasizes on the mechanism used to provide robust and effective recommendation.

Keywords: Collaborative Filtering, Content Based Filtering, Intelligent Agent, Level of Interest, Recommendation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
795 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel

Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi

Abstract:

A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.

Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
794 Design and Implementation of an Image Based System to Enhance the Security of ATM

Authors: Seyed Nima Tayarani Bathaie

Abstract:

In this paper, an image-receiving system was designed and implemented through optimization of object detection algorithms using Haar features. This optimized algorithm served as face and eye detection separately. Then, cascading them led to a clear image of the user. Utilization of this feature brought about higher security by preventing fraud. This attribute results from the fact that services will be given to the user on condition that a clear image of his face has already been captured which would exclude the inappropriate person. In order to expedite processing and eliminating unnecessary ones, the input image was compressed, a motion detection function was included in the program, and detection window size was confined.

Keywords: Face detection algorithm, Haar features, Security of ATM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
793 Selection of Relevant Servers in Distributed Information Retrieval System

Authors: Benhamouda Sara, Guezouli Larbi

Abstract:

Nowadays, the dissemination of information touches the distributed world, where selecting the relevant servers to a user request is an important problem in distributed information retrieval. During the last decade, several research studies on this issue have been launched to find optimal solutions and many approaches of collection selection have been proposed. In this paper, we propose a new collection selection approach that takes into consideration the number of documents in a collection that contains terms of the query and the weights of those terms in these documents. We tested our method and our studies show that this technique can compete with other state-of-the-art algorithms that we choose to test the performance of our approach.

Keywords: Distributed information retrieval, relevance, server selection, collection selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
792 Intelligent Aid-Analysis Based on the Use of Digital Twin: Application to Electronic Warfare System

Authors: L. Chaussy, M. Nouvel

Abstract:

Workload of the system engineers during Integration Validation Verification process of Electronic Warfare Systems (EWS) is growing with complexity of the systems and with the diversity of tested cases (diversity of operational scenario in front of EWS). Even if the use of Digital Twin makes easier conception and development phases in term of planning and test equipment availability, time to analyze tests results is still too long and too complex. The idea to reduce the system engineer’s workload and improve test coverage is to introduce some intelligent and aid-analysis algorithms to improve this step.

Keywords: Analysis tools, automatic testing, digital twin, electronic warfare system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385
791 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method

Authors: K. Machida, H. Yamada

Abstract:

Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.

Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
790 A Simulation Software for DNA Computing Algorithms Implementation

Authors: M. S. Muhammad, S. M. W. Masra, K. Kipli, N. Zamhari

Abstract:

The capturing of gel electrophoresis image represents the output of a DNA computing algorithm. Before this image is being captured, DNA computing involves parallel overlap assembly (POA) and polymerase chain reaction (PCR) that is the main of this computing algorithm. However, the design of the DNA oligonucleotides to represent a problem is quite complicated and is prone to errors. In order to reduce these errors during the design stage before the actual in-vitro experiment is carried out; a simulation software capable of simulating the POA and PCR processes is developed. This simulation software capability is unlimited where problem of any size and complexity can be simulated, thus saving cost due to possible errors during the design process. Information regarding the DNA sequence during the computing process as well as the computing output can be extracted at the same time using the simulation software.

Keywords: DNA computing, PCR, POA, simulation software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
789 Practical Aspects of Face Recognition

Authors: S. Vural, H. Yamauchi

Abstract:

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
788 A Hybrid Feature Subset Selection Approach based on SVM and Binary ACO. Application to Industrial Diagnosis

Authors: O. Kadri, M. D. Mouss, L.H. Mouss, F. Merah

Abstract:

This paper proposes a novel hybrid algorithm for feature selection based on a binary ant colony and SVM. The final subset selection is attained through the elimination of the features that produce noise or, are strictly correlated with other already selected features. Our algorithm can improve classification accuracy with a small and appropriate feature subset. Proposed algorithm is easily implemented and because of use of a simple filter in that, its computational complexity is very low. The performance of the proposed algorithm is evaluated through a real Rotary Cement kiln dataset. The results show that our algorithm outperforms existing algorithms.

Keywords: Binary Ant Colony algorithm, Support VectorMachine, feature selection, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
787 Advanced Image Analysis Tools Development for the Early Stage Bronchial Cancer Detection

Authors: P. Bountris, E. Farantatos, N. Apostolou

Abstract:

Autofluorescence (AF) bronchoscopy is an established method to detect dysplasia and carcinoma in situ (CIS). For this reason the “Sotiria" Hospital uses the Karl Storz D-light system. However, in early tumor stages the visualization is not that obvious. With the help of a PC, we analyzed the color images we captured by developing certain tools in Matlab®. We used statistical methods based on texture analysis, signal processing methods based on Gabor models and conversion algorithms between devicedependent color spaces. Our belief is that we reduced the error made by the naked eye. The tools we implemented improve the quality of patients' life.

Keywords: Bronchoscopy, digital image processing, lung cancer, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
786 Mining News Sites to Create Special Domain News Collections

Authors: David B. Bracewell, Fuji Ren, Shingo Kuroiwa

Abstract:

We present a method to create special domain collections from news sites. The method only requires a single sample article as a seed. No prior corpus statistics are needed and the method is applicable to multiple languages. We examine various similarity measures and the creation of document collections for English and Japanese. The main contributions are as follows. First, the algorithm can build special domain collections from as little as one sample document. Second, unlike other algorithms it does not require a second “general" corpus to compute statistics. Third, in our testing the algorithm outperformed others in creating collections made up of highly relevant articles.

Keywords: Information Retrieval, News, Special DomainCollections,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
785 Comprehensive Analysis of Data Mining Tools

Authors: S. Sarumathi, N. Shanthi

Abstract:

Due to the fast and flawless technological innovation there is a tremendous amount of data dumping all over the world in every domain such as Pattern Recognition, Machine Learning, Spatial Data Mining, Image Analysis, Fraudulent Analysis, World Wide Web etc., This issue turns to be more essential for developing several tools for data mining functionalities. The major aim of this paper is to analyze various tools which are used to build a resourceful analytical or descriptive model for handling large amount of information more efficiently and user friendly. In this survey the diverse tools are illustrated with their extensive technical paradigm, outstanding graphical interface and inbuilt multipath algorithms in which it is very useful for handling significant amount of data more indeed.

Keywords: Classification, Clustering, Data Mining, Machine learning, Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2439
784 Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression

Authors: Seo Young Kim, Jae Won Lee, Jong Sung Bae

Abstract:

Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.

Keywords: Clustering, microarray experiment, temporal pattern of gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
783 Energy Efficient Resource Allocation in Distributed Computing Systems

Authors: Samee Ullah Khan, C. Ardil

Abstract:

The problem of mapping tasks onto a computational grid with the aim to minimize the power consumption and the makespan subject to the constraints of deadlines and architectural requirements is considered in this paper. To solve this problem, we propose a solution from cooperative game theory based on the concept of Nash Bargaining Solution. The proposed game theoretical technique is compared against several traditional techniques. The experimental results show that when the deadline constraints are tight, the proposed technique achieves superior performance and reports competitive performance relative to the optimal solution.

Keywords: Energy efficient algorithms, resource allocation, resource management, cooperative game theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
782 A High Bitrate Information Hiding Algorithm for Video in Video

Authors: Wang Shou-Dao, Xiao Chuang-Bai, Lin Yu

Abstract:

In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.

Keywords: Information Hiding, Embed, Quantification, Extract

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
781 Visual Search Based Indoor Localization in Low Light via RGB-D Camera

Authors: Yali Zheng, Peipei Luo, Shinan Chen, Jiasheng Hao, Hong Cheng

Abstract:

Most of traditional visual indoor navigation algorithms and methods only consider the localization in ordinary daytime, while we focus on the indoor re-localization in low light in the paper. As RGB images are degraded in low light, less discriminative infrared and depth image pairs are taken, as the input, by RGB-D cameras, the most similar candidates, as the output, are searched from databases which is built in the bag-of-word framework. Epipolar constraints can be used to relocalize the query infrared and depth image sequence. We evaluate our method in two datasets captured by Kinect2. The results demonstrate very promising re-localization results for indoor navigation system in low light environments.

Keywords: Indoor navigation, low light, RGB-D camera, vision based.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
780 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
779 Elimination of Redundant Links in Web Pages– Mathematical Approach

Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi

Abstract:

With the enormous growth on the web, users get easily lost in the rich hyper structure. Thus developing user friendly and automated tools for providing relevant information without any redundant links to the users to cater to their needs is the primary task for the website owners. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent one that are likely to contain the outlying data such as noise, irrelevant and redundant data. This paper proposes new algorithm for mining the web content by detecting the redundant links from the web documents using set theoretical(classical mathematics) such as subset, union, intersection etc,. Then the redundant links is removed from the original web content to get the required information by the user..

Keywords: Web documents, Web content mining, redundantlink, outliers, set theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2015
778 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507