Search results for: Facial expression recognition
138 Antioxidant Biosensor Using Microbe
Authors: Dyah Iswantini, Trivadila, Novik Nurhidayat, Waras Nurcholis
Abstract:
The antioxidant compounds are needed for the food, beverages, and pharmaceuticals industry. For this purpose, an appropriate method is required to measure the antioxidant properties in various types of samples. Spectrophotometric method usually used has some weaknesses, including the high price, long sample preparation time, and less sensitivity. Among the alternative methods developed to overcome these weaknesses is antioxidant biosensor based on superoxide dismutase (SOD) enzyme. Therefore, this study was carried out to measure the SOD activity originating from Deinococcus radiodurans and to determine its kinetics properties. Carbon paste electrode modified with ferrocene and immobilized SOD exhibited anode and cathode current peak at potential of +400 and +300mv respectively, in both pure SOD and SOD of D. radiodurans. This indicated that the current generated was from superoxide catalytic dismutation reaction by SOD. Optimum conditions for SOD activity was at pH 9 and temperature of 27.50C for D. radiodurans SOD, and pH 11 and temperature of 200C for pure SOD. Dismutation reaction kinetics of superoxide catalyzed by SOD followed the Lineweaver-Burk kinetics with D. radiodurans SOD KMapp value was smaller than pure SOD. The result showed that D. radiodurans SOD had higher enzyme-substrate affinity and specificity than pure SOD. It concluded that D. radiodurans SOD had a great potential as biological recognition component for antioxidant biosensor.
Keywords: Antioxidant biosensor, Deinococcus radiodurans, enzyme kinetic, superoxide dismutase (SOD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120137 Gene Expressions Associated with Ultrastructural Changes in Vascular Endothelium of Atherosclerotic Lesion
Authors: M. Maimunah, G.A. Froemming, H. Nawawi, M.I. Nafeeza, O. Effat, M.R. Rohayu Izanwati, M.S. Mohamed Saifulaman
Abstract:
Attachment of the circulating monocytes to the endothelium is the earliest detectable events during formation of atherosclerosis. The adhesion molecules, chemokines and matrix proteases genes were identified to be expressed in atherogenesis. Expressions of these genes may influence structural integrity of the luminal endothelium. The aim of this study is to relate changes in the ultrastructural morphology of the aortic luminal surface and gene expressions of the endothelial surface, chemokine and MMP-12 in normal and hypercholesterolemic rabbits. Luminal endothelial surface from rabbit aortic tissue was examined by scanning electron microscopy (SEM) using low vacuum mode to ascertain ultrastructural changes in development of atherosclerotic lesion. Gene expression of adhesion molecules, MCP-1 and MMP-12 were studied by Real-time PCR. Ultrastructural observations of the aortic luminal surface exhibited changes from normal regular smooth intact endothelium to irregular luminal surface including marked globular appearance and ruptures of the membrane layer. Real-time PCR demonstrated differentially expressed of studied genes in atherosclerotic tissues. The appearance of ultrastructural changes in aortic tissue of hypercholesterolemic rabbits is suggested to have relation with underlying changes of endothelial surface molecules, chemokine and MMP-12 gene expressions.Keywords: Ultrastructure of luminal endothelial surface, Macrophage metalloelastase (MMP-12), Real-time PCR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554136 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing
Authors: Sunil Patel, Pallab Maji
Abstract:
To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.
Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434135 Corporate Environmentalism: A Case Study in the Czech Republic
Authors: Pavel Adámek
Abstract:
This study examines perception of environmental approach in small and medium-sized enterprises (SMEs) – the process by which firms integrate environmental concern into business. Based on a review of the literature, the paper synthesizes focus on environmental issues with the reflection in a case study in the Czech Republic. Two themes of corporate environmentalism are discussed – corporate environmental orientation and corporate stances toward environmental concerns. It provides theoretical material on greening organizational culture that is helpful in understanding the response of contemporary business to environmental problems. We integrate theoretical predictions with empirical findings confronted with reality. Scales to measure these themes are tested in a survey of managers in 229 Czech firms. We used the process of in-depth questioning. The research question was derived and answered in the context of the corresponding literature and conducted research. A case study showed us that environmental approach is variety different (depending on the size of the firm) in SMEs sector. The results of the empirical mapping demonstrate Czech company’s approach to environment and define the problem areas and pinpoint the main limitation in the expansion of environmental aspects. We contribute to the debate for recognition of the particular role of environmental issues in business reality.
Keywords: Corporate environmentalism, Czech Republic, empirical mapping, environmental performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085134 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal
Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden
Abstract:
Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472133 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.
Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763132 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216131 Bilingual Gaming Kit to Teach English Language through Collaborative Learning
Authors: Sarayu Agarwal
Abstract:
This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.
Keywords: English as a second language, vocabulary-building, learning through gamification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356130 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts
Authors: Dalia. G. Aseel
Abstract:
Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.
Keywords: Begomovirus, AV1 gene, sequence, cloning, whitefly, okra, cotton, tomato, RAPD, phylogenetic tree and SDS-PAGE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905129 Methodology of Personalizing Interior Spaces in Public Libraries
Authors: Baharak Mousapour
Abstract:
Creating public spaces which are tailored for the specific demands of the individuals is one of the challenges for the contemporary interior designers. Improving the general knowledge as well as providing a forum for all walks of life to exploit is one of the objectives of a public library. In this regard, interior design in consistent with the demands of the individuals is of paramount importance. Seemingly, study spaces, in particular, those in close relation to the personalized sector, have proven to be challenging, according to the literature. To address this challenge, attributes of individuals, namely, perception of people from public spaces and their interactions with the so-called spaces, should be analyzed to provide interior designers with something to work on. This paper follows the analytic-descriptive research methodology by outlining case study libraries which have personalized public libraries with the investigation of the type of personalization as its primary objective and (I) recognition of physical schedule and the know-how of the spatial connection in indoor design of a library and (II) analysis of each personalized space in relation to other spaces of the library as its secondary objectives. The significance of the current research lies in the concept of personalization as one of the most recent methods of attracting people to libraries. Previous research exists in this regard, but the lack of data concerning personalization makes this topic worth investigating. Hence, this study aims to put forward approaches through real-case studies for the designers to deal with this concept.
Keywords: interior design, library, library design, personalization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624128 3D Dense Correspondence for 3D Dense Morphable Face Shape Model
Authors: Tae in Seol, Sun-Tae Chung, Seongwon Cho
Abstract:
Realistic 3D face model is desired in various applications such as face recognition, games, avatars, animations, and etc. Construction of 3D face model is composed of 1) building a face shape model and 2) rendering the face shape model. Thus, building a realistic 3D face shape model is an essential step for realistic 3D face model. Recently, 3D morphable model is successfully introduced to deal with the various human face shapes. 3D dense correspondence problem should be precedently resolved for constructing a realistic 3D dense morphable face shape model. Several approaches to 3D dense correspondence problem in 3D face modeling have been proposed previously, and among them optical flow based algorithms and TPS (Thin Plate Spline) based algorithms are representative. Optical flow based algorithms require texture information of faces, which is sensitive to variation of illumination. In TPS based algorithms proposed so far, TPS process is performed on the 2D projection representation in cylindrical coordinates of the 3D face data, not directly on the 3D face data and thus errors due to distortion in data during 2D TPS process may be inevitable. In this paper, we propose a new 3D dense correspondence algorithm for 3D dense morphable face shape modeling. The proposed algorithm does not need texture information and applies TPS directly on 3D face data. Through construction procedures, it is observed that the proposed algorithm constructs realistic 3D face morphable model reliably and fast.Keywords: 3D Dense Correspondence, 3D Morphable Face Shape Model, 3D Face Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188127 Using Knowledge Management and Critical Thinking to Understand Thai Perceptions and Decisions towards Work-Life Balance in a Multinational Software Development Firm
Authors: N. Mantalay, N. Chakpitak, W. Janchai, P. Sureepong
Abstract:
Work-life balance has been acknowledged and promoted for the sake of employee retention. It is essential for a manager to realize the human resources situation within a company to help employees work happily and perform at their best. This paper suggests knowledge management and critical thinking are useful to motivate employees to think about their work-life balance. A qualitative case study is presented, which aimed to discover the meaning of work-life balance-s meaning from the perspective of Thai knowledge workers and how it affects their decision-making towards work resignation. Results found three types of work-life balance dimensions; a work- life balance including a workplace and a private life setting, an organizational working life balance only, and a worklife balance only in a private life setting. These aspects all influenced the decision-making of the employees. Factors within a theme of an organizational work-life balance were involved with systematic administration, fair treatment, employee recognition, challenging assignments to gain working experience, assignment engagement, teamwork, relationship with superiors, and working environment, while factors concerning private life settings were about personal demands such as an increasing their salary or starting their own business.Keywords: knowledge management, work-life balance, knowledge workers, decision-making, critical thinking, diverse workforce
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073126 Sorting Primitives and Genome Rearrangementin Bioinformatics: A Unified Perspective
Authors: Swapnoneel Roy, Minhazur Rahman, Ashok Kumar Thakur
Abstract:
Bioinformatics and computational biology involve the use of techniques including applied mathematics, informatics, statistics, computer science, artificial intelligence, chemistry, and biochemistry to solve biological problems usually on the molecular level. Research in computational biology often overlaps with systems biology. Major research efforts in the field include sequence alignment, gene finding, genome assembly, protein structure alignment, protein structure prediction, prediction of gene expression and proteinprotein interactions, and the modeling of evolution. Various global rearrangements of permutations, such as reversals and transpositions,have recently become of interest because of their applications in computational molecular biology. A reversal is an operation that reverses the order of a substring of a permutation. A transposition is an operation that swaps two adjacent substrings of a permutation. The problem of determining the smallest number of reversals required to transform a given permutation into the identity permutation is called sorting by reversals. Similar problems can be defined for transpositions and other global rearrangements. In this work we perform a study about some genome rearrangement primitives. We show how a genome is modelled by a permutation, introduce some of the existing primitives and the lower and upper bounds on them. We then provide a comparison of the introduced primitives.Keywords: Sorting Primitives, Genome Rearrangements, Transpositions, Block Interchanges, Strip Exchanges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161125 Efficiency of Investments, Financed from EU Funds in Small and Medium Enterprises in Poland
Authors: Jolanta Brodowska-Szewczuk
Abstract:
The article includes the results and conclusions from empirical researches that had been done. The research focuses on the impact of investments made in small and medium-sized enterprises financed from EU funds on the competitiveness of these companies. The researches includes financial results in sales revenue and net income, expenses, and many other new products/services on offer, higher quality products and services, more modern methods of production, innovation in management processes, increase in the number of customers, increase in market share, increase in profitability of production and provision of services. The main conclusions are that, companies with direct investments under this measure shall apply the modern methods of production. The consequence of this is to increase the quality of our products and services. Furthermore, both small and medium-sized enterprises have introduced new products and services. Investments were carried out, thus enabling better work organization in enterprises. Entrepreneurs would guarantee higher quality of service, which would result in better relationships with their customers, what is more, noting the rise in number of clients. More than half of the companies indicated that the investments contributed to the increase in market share. Same thing as for market reach and brand recognition of particular company. An interesting finding is that, investments in small enterprises were more effective than medium-sized enterprises.Keywords: Competitiveness, efficiency, EU funds, small and medium-sized enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1267124 3D Rendering of American Sign Language Finger-Spelling: A Comparative Study of Two Animation Techniques
Authors: Nicoletta Adamo-Villani
Abstract:
In this paper we report a study aimed at determining the most effective animation technique for representing ASL (American Sign Language) finger-spelling. Specifically, in the study we compare two commonly used 3D computer animation methods (keyframe animation and motion capture) in order to ascertain which technique produces the most 'accurate', 'readable', and 'close to actual signing' (i.e. realistic) rendering of ASL finger-spelling. To accomplish this goal we have developed 20 animated clips of fingerspelled words and we have designed an experiment consisting of a web survey with rating questions. 71 subjects ages 19-45 participated in the study. Results showed that recognition of the words was correlated with the method used to animate the signs. In particular, keyframe technique produced the most accurate representation of the signs (i.e., participants were more likely to identify the words correctly in keyframed sequences rather than in motion captured ones). Further, findings showed that the animation method had an effect on the reported scores for readability and closeness to actual signing; the estimated marginal mean readability and closeness was greater for keyframed signs than for motion captured signs. To our knowledge, this is the first study aimed at measuring and comparing accuracy, readability and realism of ASL animations produced with different techniques.Keywords: 3D Animation, American Sign Language, DeafEducation, Motion Capture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1998123 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios
Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong
Abstract:
Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.
Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593122 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 513121 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model
Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat
Abstract:
In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018120 Spatiotemporal Analysis of Visual Evoked Responses Using Dense EEG
Authors: Rima Hleiss, Elie Bitar, Mahmoud Hassan, Mohamad Khalil
Abstract:
A comprehensive study of object recognition in the human brain requires combining both spatial and temporal analysis of brain activity. Here, we are mainly interested in three issues: the time perception of visual objects, the ability of discrimination between two particular categories (objects vs. animals), and the possibility to identify a particular spatial representation of visual objects. Our experiment consisted of acquiring dense electroencephalographic (EEG) signals during a picture-naming task comprising a set of objects and animals’ images. These EEG responses were recorded from nine participants. In order to determine the time perception of the presented visual stimulus, we analyzed the Event Related Potentials (ERPs) derived from the recorded EEG signals. The analysis of these signals showed that the brain perceives animals and objects with different time instants. Concerning the discrimination of the two categories, the support vector machine (SVM) was applied on the instantaneous EEG (excellent temporal resolution: on the order of millisecond) to categorize the visual stimuli into two different classes. The spatial differences between the evoked responses of the two categories were also investigated. The results showed a variation of the neural activity with the properties of the visual input. Results showed also the existence of a spatial pattern of electrodes over particular regions of the scalp in correspondence to their responses to the visual inputs.
Keywords: Brain activity, dense EEG, evoked responses, spatiotemporal analysis, SVM, perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071119 Hand Gesture Interpretation Using Sensing Glove Integrated with Machine Learning Algorithms
Authors: Aqsa Ali, Aleem Mushtaq, Attaullah Memon, Monna
Abstract:
In this paper, we present a low cost design for a smart glove that can perform sign language recognition to assist the speech impaired people. Specifically, we have designed and developed an Assistive Hand Gesture Interpreter that recognizes hand movements relevant to the American Sign Language (ASL) and translates them into text for display on a Thin-Film-Transistor Liquid Crystal Display (TFT LCD) screen as well as synthetic speech. Linear Bayes Classifiers and Multilayer Neural Networks have been used to classify 11 feature vectors obtained from the sensors on the glove into one of the 27 ASL alphabets and a predefined gesture for space. Three types of features are used; bending using six bend sensors, orientation in three dimensions using accelerometers and contacts at vital points using contact sensors. To gauge the performance of the presented design, the training database was prepared using five volunteers. The accuracy of the current version on the prepared dataset was found to be up to 99.3% for target user. The solution combines electronics, e-textile technology, sensor technology, embedded system and machine learning techniques to build a low cost wearable glove that is scrupulous, elegant and portable.Keywords: American sign language, assistive hand gesture interpreter, human-machine interface, machine learning, sensing glove.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2731118 Detection and Classification of Faults on Parallel Transmission Lines Using Wavelet Transform and Neural Network
Authors: V.S.Kale, S.R.Bhide, P.P.Bedekar, G.V.K.Mohan
Abstract:
The protection of parallel transmission lines has been a challenging task due to mutual coupling between the adjacent circuits of the line. This paper presents a novel scheme for detection and classification of faults on parallel transmission lines. The proposed approach uses combination of wavelet transform and neural network, to solve the problem. While wavelet transform is a powerful mathematical tool which can be employed as a fast and very effective means of analyzing power system transient signals, artificial neural network has a ability to classify non-linear relationship between measured signals by identifying different patterns of the associated signals. The proposed algorithm consists of time-frequency analysis of fault generated transients using wavelet transform, followed by pattern recognition using artificial neural network to identify the type of the fault. MATLAB/Simulink is used to generate fault signals and verify the correctness of the algorithm. The adaptive discrimination scheme is tested by simulating different types of fault and varying fault resistance, fault location and fault inception time, on a given power system model. The simulation results show that the proposed scheme for fault diagnosis is able to classify all the faults on the parallel transmission line rapidly and correctly.
Keywords: Artificial neural network, fault detection and classification, parallel transmission lines, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012117 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion
Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto
Abstract:
In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562116 From Separatism to Coalition: Variants in Language Politics and Leadership Pattern in Dravidian Movement
Authors: Subramaniam Chandran
Abstract:
This paper describes the evolution of language politics and the part played by political leaders with reference to the Dravidian parties in Tamil Nadu. It explores the interesting evolution from separatism to coalition in sustaining the values of parliamentary democracy and federalism. It seems that the appropriation of language politics is fully ascribed to the DMK leadership under Annadurai and Karunanidhi. For them, the Tamil language is a self-determining power, a terrain of nationhood, and a perennial source of social and political powers. The DMK remains a symbol of Tamil nationalist party playing language politics in the interest of the Tamils. Though electoral alliances largely determine the success, the language politics still has significant space in the politics of Tamil Nadu. Ironically, DMK moves from the periphery to centre for getting national recognition for the Tamils as well as for its own maximization of power. The evolution can be seen in two major phases as: language politics for party building; and language politics for state building with three successive political processes, namely, language politics in the process of separatism, representative politics and coalition. The much pronounced Dravidian Movement is radical enough to democratize the party ideology to survive the spirit of parliamentary democracy. This has secured its own rewards in terms of political power. The political power provides the means to achieve the social and political goal of the political party. Language politics and leadership pattern actualized this trend though the movement is shifted from separatism to coalition.Keywords: Language politics, cultural nationalism, leadership, social justice
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962115 VHL, PBRM1 and SETD2 Genes in Kidney Cancer: A Molecular Investigation
Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan
Abstract:
Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p>0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.Keywords: Kidney cancer, molecular biomarker, expression analysis, mutation screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013114 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765113 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731112 A Cross-Disciplinary Educational Model in Biomanufacturing to Sustain a Competitive Workforce Ecosystem
Authors: Rosa Buxeda, Lorenzo Saliceti-Piazza, Rodolfo J. Romañach, Luis Ríos, Sandra L. Maldonado-Ramírez
Abstract:
Biopharmaceuticals manufacturing is one of the major economic activities worldwide. Ninety-three percent of the workforce in a biomanufacturing environment concentrates in production-related areas. As a result, strategic collaborations between industry and academia are crucial to ensure the availability of knowledgeable workforce needed in an economic region to become competitive in biomanufacturing. In the past decade, our institution has been a key strategic partner with multinational biotechnology companies in supplying science and engineering graduates in the field of industrial biotechnology. Initiatives addressing all levels of the educational pipeline, from K-12 to college to continued education for company employees have been established along a ten-year span. The Amgen BioTalents Program was designed to provide undergraduate science and engineering students with training in biomanufacturing. The areas targeted by this educational program enhance their academic development, since these topics are not part of their traditional science and engineering curricula. The educational curriculum involved the process of producing a biomolecule from the genetic engineering of cells to the production of an especially targeted polypeptide, protein expression and purification, to quality control, and validation. This paper will report and describe the implementation details and outcomes of the first sessions of the program.
Keywords: Biomanufacturing curriculum, interdisciplinary learning, workforce development, industry-academia partnering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976111 Development and Initial Validation of the Social Competency Inventory for Tertiary Level Faculty Members
Authors: Glenn M. Calaguas, Carmela S. Dizon
Abstract:
This study aimed to develop and initially validate an instrument that measures social competency among tertiary level faculty members. A review of extant literature on social competence was done. The review of extant literature led to the writing of the items in the initial instrument which was evaluated by 11 Subject Matter Experts (SMEs). The SMEs were either educators or psychologists. The results of the evaluations done by the SMEs served as bases for the creation of the pre-try-out instrument used in the first trial-run. Insights from the first trial-run participants led to the development of the main try-out instrument used in the final test administration. One Hundred Forty-one participants from five private Higher Education Institutions (HEIs) in the National Capital Region (NCR) and five private HEIs in Central Luzon in the Philippines participated in the final test administration. The reliability of the instrument was evaluated using Cronbach-s Coefficient Alpha formula and had a Cronbach-s Alpha of 0.92. On the other hand, Factor Analysis was used to evaluate the validity of the instrument and six factors were identified. The development of the final instrument was based on the results of the evaluation of the instrument-s reliability and validity. For purposes of recognition, the instrument was named “Social Competency Inventory for Tertiary Level Faculty Members (SCI-TLFM)."
Keywords: development, initial validation, social competency, tertiary level faculty members
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168110 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments
Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein
Abstract:
Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.
Keywords: Virtual Reality, effective computing, effective VR, emotion-based effective physiological database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994109 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953