Search results for: Improved Particle Swarm Optimization
2612 Modeling and Parametric Study for CO2/CH4 Separation Using Membrane Processes
Authors: Faizan Ahmad, Lau Kok Keong, Azmi Mohd. Shariff
Abstract:
The upgrading of low quality crude natural gas (NG) is attracting interest due to high demand of pipeline-grade gas in recent years. Membrane processes are commercially proven technology for the removal of impurities like carbon dioxide from NG. In this work, cross flow mathematical model has been suggested to be incorporated with ASPEN HYSYS as a user defined unit operation in order to design the membrane system for CO2/CH4 separation. The effect of operating conditions (such as feed composition and pressure) and membrane selectivity on the design parameters (methane recovery and total membrane area required for the separation) has been studied for different design configurations. These configurations include single stage (with and without recycle) and double stage membrane systems (with and without permeate or retentate recycle). It is shown that methane recovery can be improved by recycling permeate or retentate stream as well as by using double stage membrane systems. The ASPEN HYSYS user defined unit operation proposed in the study has potential to be applied for complex membrane system design and optimization.
Keywords: CO2/CH4 Separation, Membrane Process, Membrane modeling, Natural Gas Processing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38582611 Production of Spherical Ag/ZnO Nanocomposite Particles for Photocatalytic Applications
Authors: K. B. Dermenci, B. Ebin, S.Gürmen
Abstract:
Noble metal participation in nanostructured semiconductor catalysts has drawn much interest because of their improved properties. Recently, it has been discussed by many researchers that Ag participation in TiO2, CuO, ZnO semiconductors showed improved photocatalytic and optical properties. In this research, Ag/ZnO nanocomposite particles were prepared by Ultrasonic Spray Pyrolysis(USP) Method. 0.1M silver and zinc nitrate aqueous solutions were used as precursor solutions. The Ag:Zn atomic ratio of the solution was selected 1:1. Experiments were taken place under constant air flow of 400 mL/min at 800°C furnace temperature. Particles were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS). The crystallite sizes of Ag and ZnO in composite particles are 24.6 nm, 19.7 nm respectively. Although, spherical nanocomposite particles are in a range of 300- 800 nm, these particles are formed by the aggregation of primary particles which are in a range of 20-60 nm.Keywords: Ag/ZnO nanocatalysts, Nanotechnology, USP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28812610 Optimal Distribution of Lift Gas in Gas Lifted Oil Field Using MPC and Unscented Kalman Filter
Authors: Roshan Sharma, Bjørn Glemmestad
Abstract:
In gas lifted oil fields, the lift gas should be distributed optimally among the wells which share gas from a common source to maximize total oil production. One of the objectives of the paper is to show that a linear MPC consisting of a control objective and an economic objective can be used both as an optimizer and a controller for gas lifted systems. The MPC is based on linearized model of the oil field developed from first principles modeling. Simulation results show that the total oil production is increased by 3.4%. Difficulties in accurately measuring the bottom hole pressure using sensors in harsh operating conditions can be resolved by using an Unscented Kalman Filter (UKF) for estimation. In oil fields where input disturbance (total supply of gas) is not measured, UKF can also be used for disturbance estimation. Increased total oil production due to optimization leads to increased profit.
Keywords: gas lift, MPC, oil production, optimization, Unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26552609 Artificial Neural Network Modeling and Genetic Algorithm Based Optimization of Hydraulic Design Related to Seepage under Concrete Gravity Dams on Permeable Soils
Authors: Muqdad Al-Juboori, Bithin Datta
Abstract:
Hydraulic structures such as gravity dams are classified as essential structures, and have the vital role in providing strong and safe water resource management. Three major aspects must be considered to achieve an effective design of such a structure: 1) The building cost, 2) safety, and 3) accurate analysis of seepage characteristics. Due to the complexity and non-linearity relationships of the seepage process, many approximation theories have been developed; however, the application of these theories results in noticeable errors. The analytical solution, which includes the difficult conformal mapping procedure, could be applied for a simple and symmetrical problem only. Therefore, the objectives of this paper are to: 1) develop a surrogate model based on numerical simulated data using SEEPW software to approximately simulate seepage process related to a hydraulic structure, 2) develop and solve a linked simulation-optimization model based on the developed surrogate model to describe the seepage occurring under a concrete gravity dam, in order to obtain optimum and safe design at minimum cost. The result shows that the linked simulation-optimization model provides an efficient and optimum design of concrete gravity dams.Keywords: Artificial neural network, concrete gravity dam, genetic algorithm, seepage analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13772608 Data-organization Before Learning Multi-Entity Bayesian Networks Structure
Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua
Abstract:
The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.
Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16112607 Comparison of Different Data Acquisition Techniques for Shape Optimization Problems
Authors: Attila Vámosi, Tamás Mankovits, Dávid Huri, Imre Kocsis, Tamás Szabó
Abstract:
Non-linear FEM calculations are indispensable when important technical information like operating performance of a rubber component is desired. For example rubber bumpers built into air-spring structures may undergo large deformations under load, which in itself shows non-linear behavior. The changing contact range between the parts and the incompressibility of the rubber increases this non-linear behavior further. The material characterization of an elastomeric component is also a demanding engineering task. The shape optimization problem of rubber parts led to the study of FEM based calculation processes. This type of problems was posed and investigated by several authors. In this paper the time demand of certain calculation methods are studied and the possibilities of time reduction is presented.
Keywords: Rubber bumper, data acquisition, finite element analysis, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21482606 A New Heuristic Algorithm for the Classical Symmetric Traveling Salesman Problem
Authors: S. B. Liu, K. M. Ng, H. L. Ong
Abstract:
This paper presents a new heuristic algorithm for the classical symmetric traveling salesman problem (TSP). The idea of the algorithm is to cut a TSP tour into overlapped blocks and then each block is improved separately. It is conjectured that the chance of improving a good solution by moving a node to a position far away from its original one is small. By doing intensive search in each block, it is possible to further improve a TSP tour that cannot be improved by other local search methods. To test the performance of the proposed algorithm, computational experiments are carried out based on benchmark problem instances. The computational results show that algorithm proposed in this paper is efficient for solving the TSPs.Keywords: Local search, overlapped neighborhood, travelingsalesman problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22242605 Optimal Production and Maintenance Policy for a Partially Observable Production System with Stochastic Demand
Authors: Leila Jafari, Viliam Makis
Abstract:
In this paper, the joint optimization of the economic manufacturing quantity (EMQ), safety stock level, and condition-based maintenance (CBM) is presented for a partially observable, deteriorating system subject to random failure. The demand is stochastic and it is described by a Poisson process. The stochastic model is developed and the optimization problem is formulated in the semi-Markov decision process framework. A modification of the policy iteration algorithm is developed to find the optimal policy. A numerical example is presented to compare the optimal policy with the policy considering zero safety stock.Keywords: Condition-based maintenance, economic manufacturing quantity, safety stock, stochastic demand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8322604 Non-Smooth Economic Dispatch Solution by Using Enhanced Bat-Inspired Optimization Algorithm
Authors: Farhad Namdari, Reza Sedaghati
Abstract:
Economic dispatch (ED) has been considered to be one of the key functions in electric power system operation which can help to build up effective generating management plans. The practical ED problem has non-smooth cost function with nonlinear constraints which make it difficult to be effectively solved. This paper presents a novel heuristic and efficient optimization approach based on the new Bat algorithm (BA) to solve the practical non-smooth economic dispatch problem. The proposed algorithm easily takes care of different constraints. In addition, two newly introduced modifications method is developed to improve the variety of the bat population when increasing the convergence speed simultaneously. The simulation results obtained by the proposed algorithms are compared with the results obtained using other recently develop methods available in the literature.
Keywords: Non-smooth, economic dispatch, bat-inspired, nonlinear practical constraints, modified bat algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20842603 Hybrid Hierarchical Routing Protocol for WSN Lifetime Maximization
Authors: H. Aoudia, Y. Touati, E. H. Teguig, A. Ali Cherif
Abstract:
Conceiving and developing routing protocols for wireless sensor networks requires considerations on constraints such as network lifetime and energy consumption. In this paper, we propose a hybrid hierarchical routing protocol named HHRP combining both clustering mechanism and multipath optimization taking into account residual energy and RSSI measures. HHRP consists of classifying dynamically nodes into clusters where coordinators nodes with extra privileges are able to manipulate messages, aggregate data and ensure transmission between nodes according to TDMA and CDMA schedules. The reconfiguration of the network is carried out dynamically based on a threshold value which is associated with the number of nodes belonging to the smallest cluster. To show the effectiveness of the proposed approach HHRP, a comparative study with LEACH protocol is illustrated in simulations.Keywords: Routing protocols, energy optimization, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9022602 Development and in vitro Characterization of Self-nanoemulsifying Drug Delivery Systems of Valsartan
Authors: P. S. Rajinikanth, Yeoh Suyu, Sanjay Garg
Abstract:
The present study is aim to prepare and evaluate the selfnanoemulsifying drug delivery (SNEDDS) system of a poorly water soluble drug valsartan in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. The present research work describes a SNEDDS of valsartan using labrafil M 1944 CS, Tween 80 and Transcutol HP. The pseudoternary phase diagrams with presence and absence of drug were plotted to check for the emulsification range and also to evaluate the effect of valsartan on the emulsification behavior of the phases. The mixtures consisting of oil (labrafil M 1944 CS) with surfactant (tween 80), co-surfactant (Transcutol HP) were found to be optimum formulations. Prepared formulations were evaluated for its particle size distribution, nanoemulsifying properties, robustness to dilution, self emulsication time, turbidity measurement, drug content and invitro dissolution. The optimized formulations are further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential were carried out to confirm the stability of the formed SNEDDS formulations. The prepared formulation revealed t a significant improvement in terms of the drug solubility as compared with marketed tablet and pure drug.
Keywords: Self Emulsifying Drug Delivery System, Valsartan, Bioavailability, poorly soluble drug.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26802601 Optimization of Technical and Technological Solutions for the Development of Offshore Hydrocarbon Fields in the Kaliningrad Region
Authors: Pavel Shcherban, Viktoria Ivanova, Alexander Neprokin, Vladislav Golovanov
Abstract:
Currently, LLC «Lukoil-Kaliningradmorneft» is implementing a comprehensive program for the development of offshore fields of the Kaliningrad region. This is largely associated with the depletion of the resource base of land in the region, as well as the positive results of geological investigation surrounding the Baltic Sea area and the data on the volume of hydrocarbon recovery from a single offshore field are working on the Kaliningrad region – D-6 «Kravtsovskoye».The article analyzes the main stages of the LLC «Lukoil-Kaliningradmorneft»’s development program for the development of the hydrocarbon resources of the region's shelf and suggests an optimization algorithm that allows managing a multi-criteria process of development of shelf deposits. The algorithm is formed on the basis of the problem of sequential decision making, which is a section of dynamic programming. Application of the algorithm during the consolidation of the initial data, the elaboration of project documentation, the further exploration and development of offshore fields will allow to optimize the complex of technical and technological solutions and increase the economic efficiency of the field development project implemented by LLC «Lukoil-Kaliningradmorneft».
Keywords: Offshore fields of hydrocarbons of the Baltic Sea, Development of offshore oil and gas fields, Optimization of the field development scheme, Solution of multi-criteria tasks in the oil and gas complex, Quality management of technical and technological processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8572600 Improved Performance Scheme for Joint Transmission in Downlink Coordinated Multi-Point Transmission
Authors: Young-Su Ryu, Su-Hyun Jung, Myoung-Jin Kim, Hyoung-Kyu Song
Abstract:
In this paper, improved performance scheme for joint transmission (JT) is proposed in downlink (DL) coordinated multi-point (CoMP) in case of the constraint transmission power. This scheme is that a serving transmission point (TP) requests the JT to an inter-TP and it selects a precoding technique according to the channel state information (CSI) from user equipment (UE). The simulation results show that the bit error rate (BER) and the throughput performances of the proposed scheme provide the high spectral efficiency and the reliable data at the cell edge.Keywords: CoMP, joint transmission, minimum mean square error, zero-forcing, zero-forcing dirty paper coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17802599 Process Optimization Regarding Geometrical Variation and Sensitivity Involving Dental Drill- and Implant-Guided Surgeries
Authors: T. Kero, R. Söderberg, M. Andersson, L. Lindkvist
Abstract:
Within dental-guided surgery, there has been a lack of analytical methods for optimizing the treatment of the rehabilitation concepts regarding geometrical variation. The purpose of this study is to find the source of the greatest geometrical variation contributor and sensitivity contributor with the help of virtual variation simulation of a dental drill- and implant-guided surgery process using a methodical approach. It is believed that lower geometrical variation will lead to better patient security and higher quality of dental drill- and implant-guided surgeries. It was found that the origin of the greatest contributor to the most variation, and hence where the foci should be set, in order to minimize geometrical variation was in the assembly category (surgery). This was also the category that was the most sensitive for geometrical variation.Keywords: Variation Simulation, Process Optimization, Guided Surgeries, Dental Prosthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12852598 Optimization of Air Pollution Control Model for Mining
Authors: Zunaira Asif, Zhi Chen
Abstract:
The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.
Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16072597 Optimization of Flexible Job Shop Scheduling Problem with Sequence Dependent Setup Times Using Genetic Algorithm Approach
Authors: Sanjay Kumar Parjapati, Ajai Jain
Abstract:
This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order.
Keywords: Flexible Job Shop, Genetic Algorithm, Makespan, Sequence Dependent Setup Times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32942596 Multi-Objective Optimization in End Milling of Al-6061 Using Taguchi Based G-PCA
Authors: M. K. Pradhan, Mayank Meena, Shubham Sen, Arvind Singh
Abstract:
In this study, a multi objective optimization for end milling of Al 6061 alloy has been presented to provide better surface quality and higher Material Removal Rate (MRR). The input parameters considered for the analysis are spindle speed, depth of cut and feed. The experiments were planned as per Taguchis design of experiment, with L27 orthogonal array. The Grey Relational Analysis (GRA) has been used for transforming multiple quality responses into a single response and the weights of the each performance characteristics are determined by employing the Principal Component Analysis (PCA), so that their relative importance can be properly and objectively described. The results reveal that Taguchi based G-PCA can effectively acquire the optimal combination of cutting parameters.Keywords: Material Removal Rate, Surface Roughness, Taguchi Method, Grey Relational Analysis, Principal Component Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22272595 Stability Optimization of Functionally Graded Pipes Conveying Fluid
Authors: Karam Y. Maalawi, Hanan E.M EL-Sayed
Abstract:
This paper presents an exact analytical model for optimizing stability of thin-walled, composite, functionally graded pipes conveying fluid. The critical flow velocity at which divergence occurs is maximized for a specified total structural mass in order to ensure the economic feasibility of the attained optimum designs. The composition of the material of construction is optimized by defining the spatial distribution of volume fractions of the material constituents using piecewise variations along the pipe length. The major aim is to tailor the material distribution in the axial direction so as to avoid the occurrence of divergence instability without the penalty of increasing structural mass. Three types of boundary conditions have been examined; namely, Hinged-Hinged, Clamped- Hinged and Clamped-Clamped pipelines. The resulting optimization problem has been formulated as a nonlinear mathematical programming problem solved by invoking the MatLab optimization toolbox routines, which implement constrained function minimization routine named “fmincon" interacting with the associated eigenvalue problem routines. In fact, the proposed mathematical models have succeeded in maximizing the critical flow velocity without mass penalty and producing efficient and economic designs having enhanced stability characteristics as compared with the baseline designs.Keywords: Functionally graded materials, pipe flow, optimumdesign, fluid- structure interaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22082594 Adaptive Shape Parameter (ASP) Technique for Local Radial Basis Functions (RBFs) and Their Application for Solution of Navier Strokes Equations
Authors: A. Javed, K. Djidjeli, J. T. Xing
Abstract:
The concept of adaptive shape parameters (ASP) has been presented for solution of incompressible Navier Strokes equations using mesh-free local Radial Basis Functions (RBF). The aim is to avoid ill-conditioning of coefficient matrices of RBF weights and inaccuracies in RBF interpolation resulting from non-optimized shape of basis functions for the cases where data points (or nodes) are not distributed uniformly throughout the domain. Unlike conventional approaches which assume globally similar values of RBF shape parameters, the presented ASP technique suggests that shape parameter be calculated exclusively for each data point (or node) based on the distribution of data points within its own influence domain. This will ensure interpolation accuracy while still maintaining well conditioned system of equations for RBF weights. Performance and accuracy of ASP technique has been tested by evaluating derivatives and laplacian of a known function using RBF in Finite difference mode (RBFFD), with and without the use of adaptivity in shape parameters. Application of adaptive shape parameters (ASP) for solution of incompressible Navier Strokes equations has been presented by solving lid driven cavity flow problem on mesh-free domain using RBF-FD. The results have been compared for fixed and adaptive shape parameters. Improved accuracy has been achieved with the use of ASP in RBF-FD especially at regions where larger gradients of field variables exist.
Keywords: CFD, Meshless Particle Method, Radial Basis Functions, Shape Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28302593 Statistical Optimization of the Enzymatic Saccharification of the Oil Palm Empty Fruit Bunches
Authors: Rashid S. S., Alam M. Z.
Abstract:
A statistical optimization of the saccharification process of EFB was studied. The statistical analysis was done by applying faced centered central composite design (FCCCD) under response surface methodology (RSM). In this investigation, EFB dose, enzyme dose and saccharification period was examined, and the maximum 53.45% (w/w) yield of reducing sugar was found with 4% (w/v) of EFB, 10% (v/v) of enzyme after 120 hours of incubation. It can be calculated that the conversion rate of cellulose content of the substrate is more than 75% (w/w) which can be considered as a remarkable achievement. All the variables, linear, quadratic and interaction coefficient, were found to be highly significant, other than two coefficients, one quadratic and another interaction coefficient. The coefficient of determination (R2) is 0.9898 that confirms a satisfactory data and indicated that approximately 98.98% of the variability in the dependent variable, saccharification of EFB, could be explained by this model.Keywords: Face centered central composite design (FCCCD), Liquid state bioconversion (LSB), Palm oil mill effluent, Trichoderma reesei RUT C-30.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22512592 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.
Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34222591 EML-Estimation of Multivariate t Copulas with Heuristic Optimization
Authors: Jin Zhang, Wing Lon Ng
Abstract:
In recent years, copulas have become very popular in financial research and actuarial science as they are more flexible in modelling the co-movements and relationships of risk factors as compared to the conventional linear correlation coefficient by Pearson. However, a precise estimation of the copula parameters is vital in order to correctly capture the (possibly nonlinear) dependence structure and joint tail events. In this study, we employ two optimization heuristics, namely Differential Evolution and Threshold Accepting to tackle the parameter estimation of multivariate t distribution models in the EML approach. Since the evolutionary optimizer does not rely on gradient search, the EML approach can be applied to estimation of more complicated copula models such as high-dimensional copulas. Our experimental study shows that the proposed method provides more robust and more accurate estimates as compared to the IFM approach.Keywords: Copula Models, Student t Copula, Parameter Inference, Differential Evolution, Threshold Accepting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15602590 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.
Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13122589 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles
Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering
Abstract:
Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is blended with glass fibers, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled fiber without sizing agent were identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.
Keywords: electrostatic charging, hybrid fiber composite, recycling, short fiber composites
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6722588 Optimization of CO2 Emissions and Cost for Composite Building Design with NSGA-II
Authors: Ji Hyeong Park, Ji Hye Jeon, Hyo Seon Park
Abstract:
Environmental pollution problems have been globally main concern in all fields including economy, society and culture into the 21st century. Beginning with the Kyoto Protocol, the reduction on the emissions of greenhouse gas such as CO2 and SOX has been a principal challenge of our day. As most buildings unlike durable goods in other industries have a characteristic and long life cycle, they consume energy in quantity and emit much CO2. Thus, for green building construction, more research is needed to reduce the CO2 emissions at each stage in the life cycle. However, recent studies are focused on the use and maintenance phase. Also, there is a lack of research on the initial design stage, especially the structure design. Therefore, in this study, we propose an optimal design plan considering CO2 emissions and cost in composite buildings simultaneously by applying to the structural design of actual building.Keywords: Multi-objective optimization, CO2 emissions, structural cost, encased composite structure
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21652587 Strength Optimization of Induction Hardened Splined Shaft – Material and Geometric Aspects
Authors: I. Barsoum, F. Khan
Abstract:
the current study presents a modeling framework to determine the torsion strength of an induction hardened splined shaft by considering geometry and material aspects with the aim to optimize the static torsion strength by selection of spline geometry and hardness depth. Six different spline geometries and seven different hardness profiles including non-hardened and throughhardened shafts have been considered. The results reveal that the torque that causes initial yielding of the induction hardened splined shaft is strongly dependent on the hardness depth and the geometry of the spline teeth. Guidelines for selection of the appropriate hardness depth and spline geometry are given such that an optimum static torsion strength of the component can be achieved.
Keywords: Static strength, splined shaft, torsion, induction hardening, hardness profile, finite element, optimization, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49702586 Design Channel Non-Persistent CSMA MAC Protocol Model for Complex Wireless Systems Based on SoC
Authors: Ibrahim A. Aref, Tarek El-Mihoub, Khadiga Ben Musa
Abstract:
This paper presents Carrier Sense Multiple Access (CSMA) communication models based on SoC design methodology. Such a model can be used to support the modeling of the complex wireless communication systems. Therefore, the use of such communication model is an important technique in the construction of high-performance communication. SystemC has been chosen because it provides a homogeneous design flow for complex designs (i.e. SoC and IP-based design). We use a swarm system to validate CSMA designed model and to show how advantages of incorporating communication early in the design process. The wireless communication created through the modeling of CSMA protocol that can be used to achieve communication between all the agents and to coordinate access to the shared medium (channel).Keywords: SystemC, modeling, simulation, CSMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16602585 An Optimal Feature Subset Selection for Leaf Analysis
Authors: N. Valliammal, S.N. Geethalakshmi
Abstract:
This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22422584 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme
Authors: Yoichi Hikino, Mutsuto Kawahara
Abstract:
The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14652583 An Efficient Approach for Optimal Placement of TCSC in Double Auction Power Market
Authors: Prashant Kumar Tiwari, Yog Raj Sood
Abstract:
This paper proposes an investment cost recovery based efficient and fast sequential optimization approach to optimal allocation of thyristor controlled series compensator (TCSC) in competitive power market. The optimization technique has been used with an objective to maximizing the social welfare and minimizing the device installation cost by suitable location and rating of TCSC in the system. The effectiveness of proposed approach for location of TCSC has been compared with some existing methods of TCSC placement, in terms of its impact on social welfare, TCSC investment recovery and optimal generation as well as load patterns. The results have been obtained on modified IEEE 14-bus system.Keywords: Double auction market, Investment cost recovery, Optimal location, Social welfare, TCSC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2254