Search results for: machining accuracy.
943 Hybrid Modeling Algorithm for Continuous Tamil Speech Recognition
Authors: M. Kalamani, S. Valarmathy, M. Krishnamoorthi
Abstract:
In this paper, Fuzzy C-Means clustering with Expectation Maximization-Gaussian Mixture Model based hybrid modeling algorithm is proposed for Continuous Tamil Speech Recognition. The speech sentences from various speakers are used for training and testing phase and objective measures are between the proposed and existing Continuous Speech Recognition algorithms. From the simulated results, it is observed that the proposed algorithm improves the recognition accuracy and F-measure up to 3% as compared to that of the existing algorithms for the speech signal from various speakers. In addition, it reduces the Word Error Rate, Error Rate and Error up to 4% as compared to that of the existing algorithms. In all aspects, the proposed hybrid modeling for Tamil speech recognition provides the significant improvements for speechto- text conversion in various applications.
Keywords: Speech Segmentation, Feature Extraction, Clustering, HMM, EM-GMM, CSR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2139942 Identifying Attack Code through an Ontology-Based Multiagent Tool: FROID
Authors: Salvador Mandujano
Abstract:
This paper describes the design and results of FROID, an outbound intrusion detection system built with agent technology and supported by an attacker-centric ontology. The prototype features a misuse-based detection mechanism that identifies remote attack tools in execution. Misuse signatures composed of attributes selected through entropy analysis of outgoing traffic streams and process runtime data are derived from execution variants of attack programs. The core of the architecture is a mesh of self-contained detection cells organized non-hierarchically that group agents in a functional fashion. The experiments show performance gains when the ontology is enabled as well as an increase in accuracy achieved when correlation cells combine detection evidence received from independent detection cells.Keywords: Outbound intrusion detection, knowledge management, multiagent systems, ontology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663941 Extended Constraint Mask Based One-Bit Transform for Low-Complexity Fast Motion Estimation
Authors: Oğuzhan Urhan
Abstract:
In this paper, an improved motion estimation (ME) approach based on weighted constrained one-bit transform is proposed for block-based ME employed in video encoders. Binary ME approaches utilize low bit-depth representation of the original image frames with a Boolean exclusive-OR based hardware efficient matching criterion to decrease computational burden of the ME stage. Weighted constrained one-bit transform (WC‑1BT) based approach improves the performance of conventional C-1BT based ME employing 2-bit depth constraint mask instead of a 1-bit depth mask. In this work, the range of constraint mask is further extended to increase ME performance of WC-1BT approach. Experiments reveal that the proposed method provides better ME accuracy compared existing similar ME methods in the literature.
Keywords: Fast motion estimation, low-complexity motion estimation, video coding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854940 Performance Analysis of Artificial Neural Network Based Land Cover Classification
Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul
Abstract:
Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.Keywords: Landcover classification, artificial neural network, remote sensing, SPOT-5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607939 Hospital Facility Location Selection Using Permanent Analytics Process
Authors: C. Ardil
Abstract:
In this paper, a new MCDMA approach, the permanent analytics process is proposed to assess the immovable valuation criteria and their significance in the placement of the healthcare facility. Five decision factors are considered for the value and selection of immovables. In the multiple factor selection problems, the priority vector of the criteria used to compare several immovables is first determined using the permanent analytics method, a mathematical model for the multiple criteria decisionmaking process. Then, to demonstrate the viability and efficacy of the suggested approach, twenty potential candidate locations were evaluated using the hospital site selection problem's decision criteria. The ranking accuracy of estimation was evaluated using composite programming, which took into account both the permanent analytics process and the weighted multiplicative model.
Keywords: Hospital Facility Location Selection, Permanent Analytics Process, Multiple Criteria Decision Making (MCDM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434938 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2765937 State Feedback Speed Controller for Turbocharged Diesel Engine and Its Robustness
Authors: Dileep Malkhede, Bhartendu Seth
Abstract:
In this paper, the full state feedback controllers capable of regulating and tracking the speed trajectory are presented. A fourth order nonlinear mean value model of a 448 kW turbocharged diesel engine published earlier is used for the purpose. For designing controllers, the nonlinear model is linearized and represented in state-space form. Full state feedback controllers capable of meeting varying speed demands of drivers are presented. Main focus here is to investigate sensitivity of the controller to the perturbations in the parameters of the original nonlinear model. Suggested controller is shown to be highly insensitive to the parameter variations. This indicates that the controller is likely perform with same accuracy even after significant wear and tear of engine due to its use for years.Keywords: Diesel engine model, Engine speed control, State feedback controller, Controller robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223936 Design of the Production Line Based On RFID through 3D Modeling
Authors: Aliakbar Akbari, Majid Hashemipour, Shiva Mirshahi
Abstract:
Radio-frequency identification has entered as a beneficial means with conforming GS1 standards to provide the best solutions in the manufacturing area. It competes with other automated identification technologies e.g. barcodes and smart cards with regard to high speed scanning, reliability and accuracy as well. The purpose of this study is to improve production line-s performance by implementing RFID system in the manufacturing area on the basis of radio-frequency identification (RFID) system by 3D modeling in the program Cinema 4D R13 which provides obvious graphical scenes for users to portray their applications. Finally, with regard to improving system performance, it shows how RFID appears as a well-suited technology in a comparison of the barcode scanner to handle different kinds of raw materials in the production line base on logical process.
Keywords: Radio Frequency Identification, Manufacturing and Production Lines, 3D modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110935 A Comparison of YOLO Family for Apple Detection and Counting in Orchards
Authors: Yuanqing Li, Changyi Lei, Zhaopeng Xue, Zhuo Zheng, Yanbo Long
Abstract:
In agricultural production and breeding, implementing automatic picking robot in orchard farming to reduce human labour and error is challenging. The core function of it is automatic identification based on machine vision. This paper focuses on apple detection and counting in orchards and implements several deep learning methods. Extensive datasets are used and a semi-automatic annotation method is proposed. The proposed deep learning models are in state-of-the-art YOLO family. In view of the essence of the models with various backbones, a multi-dimensional comparison in details is made in terms of counting accuracy, mAP and model memory, laying the foundation for realising automatic precision agriculture.
Keywords: Agricultural object detection, Deep learning, machine vision, YOLO family.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099934 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.
Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419933 Modeling and Simulation of Position Estimation of Switched Reluctance Motor with Artificial Neural Networks
Authors: Oguz Ustun, Erdal Bekiroglu
Abstract:
In the present study, position estimation of switched reluctance motor (SRM) has been achieved on the basis of the artificial neural networks (ANNs). The ANNs can estimate the rotor position without using an extra rotor position sensor by measuring the phase flux linkages and phase currents. Flux linkage-phase current-rotor position data set and supervised backpropagation learning algorithm are used in training of the ANN based position estimator. A 4-phase SRM have been used to verify the accuracy and feasibility of the proposed position estimator. Simulation results show that the proposed position estimator gives precise and accurate position estimations for both under the low and high level reference speeds of the SRM
Keywords: Artificial neural networks, modeling andsimulation, position observer, switched reluctance motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062932 Real-Time Defects Detection Algorithm for High-Speed Steel Bar in Coil
Authors: Se Ho Choi, Jong Pil Yun, Boyeul Seo, YoungSu Park, Sang Woo Kim
Abstract:
This paper presents a real-time defect detection algorithm for high-speed steel bar in coil. Because the target speed is very high, proposed algorithm should process quickly the large volumes of image for real-time processing. Therefore, defect detection algorithm should satisfy two conflicting requirements of reducing the processing time and improving the efficiency of defect detection. To enhance performance of detection, edge preserving method is suggested for noise reduction of target image. Finally, experiment results show that the proposed algorithm guarantees the condition of the real-time processing and accuracy of detection.Keywords: Defect detection, edge preserving filter, real-time image processing, surface inspection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295931 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260930 A Stereo Vision System for Top View Book Scanners
Authors: Erik Lilienblum, Robert Niese, Bernd Michaelis
Abstract:
This paper proposes a novel stereo vision technique for top view book scanners which provide us with dense 3d point clouds of page surfaces. This is a precondition to dewarp bound volumes independent of 2d information on the page. Our method is based on algorithms, which normally require the projection of pattern sequences with structured light. We use image sequences of the moving stripe lighting of the top view scanner instead of an additional light projection. Thus the stereo vision setup is simplified without losing measurement accuracy. Furthermore we improve a surface model dewarping method through introducing a difference vector based on real measurements. Although our proposed method is hardly expensive neither in calculation time nor in hardware requirements we present good dewarping results even for difficult examples.Keywords: stereo vision, 3d surface reconstruction, dewarpingdocuments, book scanner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588929 An Empirical Formula for Seismic Test of Telecommunication Equipments
Authors: Young Hoon Lee, Bong Jin Kang, Won Ho Kang
Abstract:
Antiseismic property of telecommunication equipment is very important for the grasp of the damage and the restoration after earthquake. Telecommunication business operators are regulating seismic standard for their equipments. These standards are organized to simulate the real seismic situations and usually define the minimum value of first natural frequency of the equipments or the allowable maximum displacement of top of the equipments relative to bottom. Using the finite element analysis, natural frequency can be obtained with high accuracy but the relative displacement of top of the equipments is difficult to predict accurately using the analysis. Furthermore, in the case of simulating the equipments with access floor, predicting the relative displacement of top of the equipments become more difficult. In this study, using enormous experimental datum, an empirical formula is suggested to forecast the relative displacement of top of the equipments. Also it can be known that which physical quantities are related with the relative displacement.Keywords: Empirical formula, First natural frequency, Seismic test, Telecommunication equipments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801928 Empirical and Indian Automotive Equity Portfolio Decision Support
Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu
Abstract:
A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.
Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036927 ANFIS Approach for Locating Faults in Underground Cables
Authors: Magdy B. Eteiba, Wael Ismael Wahba, Shimaa Barakat
Abstract:
This paper presents a fault identification, classification and fault location estimation method based on Discrete Wavelet Transform and Adaptive Network Fuzzy Inference System (ANFIS) for medium voltage cable in the distribution system.
Different faults and locations are simulated by ATP/EMTP, and then certain selected features of the wavelet transformed signals are used as an input for a training process on the ANFIS. Then an accurate fault classifier and locator algorithm was designed, trained and tested using current samples only. The results obtained from ANFIS output were compared with the real output. From the results, it was found that the percentage error between ANFIS output and real output is less than three percent. Hence, it can be concluded that the proposed technique is able to offer high accuracy in both of the fault classification and fault location.
Keywords: ANFIS, Fault location, Underground Cable, Wavelet Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2741926 Validation of the WAsP Model for a Terrain Surrounded by Mountainous Region
Authors: Mohammadamin Zanganeh, Vahid Khalajzadeh
Abstract:
The problems associated with wind predictions of WAsP model in complex terrain are already the target of several studies in the last decade. In this paper, the influence of surrounding orography on accuracy of wind data analysis of a train is investigated. For the case study, a site with complex surrounding orography is considered. This site is located in Manjil, one of the windiest cities of Iran. For having precise evaluation of wind regime in the site, one-year wind data measurements from two metrological masts are used. To validate the obtained results from WAsP, the cross prediction between each mast is performed. The analysis reveals that WAsP model can estimate the wind speed behavior accurately. In addition, results show that this software can be used for predicting the wind regime in flat sites with complex surrounding orography.Keywords: Complex terrain, Meteorological mast, WAsPmodel, Wind prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790925 Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier
Authors: Marzuki Khalid, RubiyahYusof, AnisSalwaMohdKhairuddin
Abstract:
An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.Keywords: Tropical wood species, nonlinear data, featureextractors, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000924 White Blood Cells Identification and Counting from Microscopic Blood Image
Authors: Lorenzo Putzu, Cecilia Di Ruberto
Abstract:
The counting and analysis of blood cells allows the evaluation and diagnosis of a vast number of diseases. In particular, the analysis of white blood cells (WBCs) is a topic of great interest to hematologists. Nowadays the morphological analysis of blood cells is performed manually by skilled operators. This involves numerous drawbacks, such as slowness of the analysis and a nonstandard accuracy, dependent on the operator skills. In literature there are only few examples of automated systems in order to analyze the white blood cells, most of which only partial. This paper presents a complete and fully automatic method for white blood cells identification from microscopic images. The proposed method firstly individuates white blood cells from which, subsequently, nucleus and cytoplasm are extracted. The whole work has been developed using MATLAB environment, in particular the Image Processing Toolbox.Keywords: Automatic detection, Biomedical image processing, Segmentation, White blood cell analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8904923 Spatial Audio Player Using Musical Genre Classification
Authors: Jun-Yong Lee, Hyoung-Gook Kim
Abstract:
In this paper, we propose a smart music player that combines the musical genre classification and the spatial audio processing. The musical genre is classified based on content analysis of the musical segment detected from the audio stream. In parallel with the classification, the spatial audio quality is achieved by adding an artificial reverberation in a virtual acoustic space to the input mono sound. Thereafter, the spatial sound is boosted with the given frequency gains based on the musical genre when played back. Experiments measured the accuracy of detecting the musical segment from the audio stream and its musical genre classification. A listening test was performed based on the virtual acoustic space based spatial audio processing.
Keywords: Automatic equalization, genre classification, music segment detection, spatial audio processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624922 Panoramic Sensor Based Blind Spot Accident Prevention System
Authors: Rajendra Prasad Mahapatra, K. Vimal Kumar
Abstract:
There are many automotive accidents due to blind spots and driver inattentiveness. Blind spot is the area that is invisible to the driver's viewpoint without head rotation. Several methods are available for assisting the drivers. Simplest methods are — rear mirrors and wide-angle lenses. But, these methods have a disadvantage of the requirement for human assistance. So, the accuracy of these devices depends on driver. Another approach called an automated approach that makes use of sensors such as sonar or radar. These sensors are used to gather range information. The range information will be processed and used for detecting the collision. The disadvantage of this system is — low angular resolution and limited sensing volumes. This paper is a panoramic sensor based automotive vehicle monitoring..
Keywords: Panoramic sensors, Blind spot, Convex lens, Computer Vision, Sonar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117921 Neural Network Based Approach for Face Detection cum Face Recognition
Authors: Kesari Verma, Aniruddha S. Thoke, Pritam Singh
Abstract:
Automatic face detection is a complex problem in image processing. Many methods exist to solve this problem such as template matching, Fisher Linear Discriminate, Neural Networks, SVM, and MRC. Success has been achieved with each method to varying degrees and complexities. In proposed algorithm we used upright, frontal faces for single gray scale images with decent resolution and under good lighting condition. In the field of face recognition technique the single face is matched with single face from the training dataset. The author proposed a neural network based face detection algorithm from the photographs as well as if any test data appears it check from the online scanned training dataset. Experimental result shows that the algorithm detected up to 95% accuracy for any image.Keywords: Face Detection, Face Recognition, NN Approach, PCA Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2301920 Design of FIR Filter for Water Level Detection
Authors: Sakol Udomsiri, Masahiro Iwahashi
Abstract:
This paper proposes a new design of spatial FIR filter to automatically detect water level from a video signal of various river surroundings. A new approach in this report applies "addition" of frames and a "horizontal" edge detector to distinguish water region and land region. Variance of each line of a filtered video frame is used as a feature value. The water level is recognized as a boundary line between the land region and the water region. Edge detection filter essentially demarcates between two distinctly different regions. However, the conventional filters are not automatically adaptive to detect water level in various lighting conditions of river scenery. An optimized filter is purposed so that the system becomes robust to changes of lighting condition. More reliability of the proposed system with the optimized filter is confirmed by accuracy of water level detection.Keywords: water level, video, filter, detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218919 Numerical Solution of Second-Order Ordinary Differential Equations by Improved Runge-Kutta Nystrom Method
Authors: Faranak Rabiei, Fudziah Ismail, S. Norazak, Saeid Emadi
Abstract:
In this paper we developed the Improved Runge-Kutta Nystrom (IRKN) method for solving second order ordinary differential equations. The methods are two step in nature and require lower number of function evaluations per step compared with the existing Runge-Kutta Nystrom (RKN) methods. Therefore, the methods are computationally more efficient at achieving the higher order of local accuracy. Algebraic order conditions of the method are obtained and the third and fourth order method are derived with two and three stages respectively. The numerical results are given to illustrate the efficiency of the proposed method compared to the existing RKN methods.
Keywords: Improved Runge-Kutta Nystrom method, Two step method, Second-order ordinary differential equations, Order conditions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6850918 Support Vector Machine Approach for Classification of Cancerous Prostate Regions
Authors: Metehan Makinacı
Abstract:
The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.
Keywords: Computer-aided diagnosis, support vector machines, Gauss-Markov random fields, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793917 A Novel Estimation Method for Integer Frequency Offset in Wireless OFDM Systems
Authors: Taeung Yoon, Youngpo Lee, Chonghan Song, Na Young Ha, Seokho Yoon
Abstract:
Ren et al. presented an efficient carrier frequency offset (CFO) estimation method for orthogonal frequency division multiplexing (OFDM), which has an estimation range as large as the bandwidth of the OFDM signal and achieves high accuracy without any constraint on the structure of the training sequence. However, its detection probability of the integer frequency offset (IFO) rapidly varies according to the fractional frequency offset (FFO) change. In this paper, we first analyze the Ren-s method and define two criteria suitable for detection of IFO. Then, we propose a novel method for the IFO estimation based on the maximum-likelihood (ML) principle and the detection criteria defined in this paper. The simulation results demonstrate that the proposed method outperforms the Ren-s method in terms of the IFO detection probability irrespective of a value of the FFO.Keywords: Orthogonal frequency division multiplexing, integer frequency offset, estimation, training symbol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452916 Non-contact Gaze Tracking with Head Movement Adaptation based on Single Camera
Authors: Ying Huang, Zhiliang Wang, An Ping
Abstract:
With advances in computer vision, non-contact gaze tracking systems are heading towards being much easier to operate and more comfortable for use, the technique proposed in this paper is specially designed for achieving these goals. For the convenience in operation, the proposal aims at the system with simple configuration which is composed of a fixed wide angle camera and dual infrared illuminators. Then in order to enhance the usability of the system based on single camera, a self-adjusting method which is called Real-time gaze Tracking Algorithm with head movement Compensation (RTAC) is developed for estimating the gaze direction under natural head movement and simplifying the calibration procedure at the same time. According to the actual evaluations, the average accuracy of about 1° is achieved over a field of 20×15×15 cm3.
Keywords: computer vision, gaze tracking, human-computer interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1920915 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257914 Video-Based Tracking of Laparoscopic Instruments Using an Orthogonal Webcams System
Authors: Fernando Pérez, Humberto Sossa, Rigoberto Martínez, Daniel Lorias, Arturo Minor
Abstract:
This paper presents a system for tracking the movement of laparoscopic instruments which is based on an orthogonal system of webcams and video image processing. The movements are captured with two webcams placed orthogonally inside of the physical trainer. On the image, the instruments were detected by using color markers placed on the distal tip of each instrument. The 3D position of the tip of the instrument within the work space was obtained by linear triangulation method. Preliminary results showed linearity and repeatability in the motion tracking with a resolution of 0.616 mm in each axis; the accuracy of the system showed a 3D instrument positioning error of 1.009 ± 0.101 mm. This tool is a portable and low-cost alternative to traditional tracking devices and a trustable method for the objective evaluation of the surgeon’s surgical skills.
Keywords: Laparoscopic Surgery, Orthogonal Vision, Tracking Instruments, Triangulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643