Search results for: energy technology
4144 Viscosity of Vegetable Oils and Biodiesel and Energy Generation
Authors: Thiago de O. Macedo, Roberto G. Pereira, Juan M. Pardal, Alexandre S. Soares, Valdir deJ. Lameira
Abstract:
The present work describes an experimental investigation concerning the determination of viscosity behavior with shear rate and temperature of edible oils: canola; sunflower; corn; soybean and the no edible oil: Jatropha curcas. Besides these, it was tested a blend of canola, corn and sunflower oils as well as sunflower and soybean biodiesel. Based on experiments, it was obtained shear stress and viscosity at different shear rates of each sample at 40ºC, as well as viscosity of each sample at various temperatures in the range of 24 to 85ºC. Furthermore, it was compared the curves obtained for the viscosity versus temperature with the curves obtained by modeling the viscosity dependency on temperature using the Vogel equation. Also a test in a stationary engine was performed in order to study the energy generation using blends of soybean oil and soybean biodiesel with diesel.Keywords: Biofuel, energy generation, vegetable oil, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96124143 A New Model to Perform Preliminary Evaluations of Complex Systems for the Production of Energy for Buildings: Case Study
Authors: Roberto de Lieto Vollaro, Emanuele de Lieto Vollaro, Gianluca Coltrinari
Abstract:
The building sector is responsible, in many industrialized countries, for about 40% of the total energy requirements, so it seems necessary to devote some efforts in this area in order to achieve a significant reduction of energy consumption and of greenhouse gases emissions. The paper presents a study aiming at providing a design methodology able to identify the best configuration of the system building/plant, from a technical, economic and environmentally point of view. Normally, the classical approach involves a building's energy loads analysis under steady state conditions, and subsequent selection of measures aimed at improving the energy performance, based on previous experience made by architects and engineers in the design team. Instead, the proposed approach uses a sequence of two wellknown scientifically validated calculation methods (TRNSYS and RETScreen), that allow quite a detailed feasibility analysis. To assess the validity of the calculation model, an existing, historical building in Central Italy, that will be the object of restoration and preservative redevelopment, was selected as a casestudy. The building is made of a basement and three floors, with a total floor area of about 3,000 square meters. The first step has been the determination of the heating and cooling energy loads of the building in a dynamic regime by means, which allows simulating the real energy needs of the building in function of its use. Traditional methodologies, based as they are on steady-state conditions, cannot faithfully reproduce the effects of varying climatic conditions and of inertial properties of the structure. With this model is possible to obtain quite accurate and reliable results that allow identifying effective combinations building-HVAC system. The second step has consisted of using output data obtained as input to the calculation model, which enables to compare different system configurations from the energy, environmental and financial point of view, with an analysis of investment, and operation and maintenance costs, so allowing determining the economic benefit of possible interventions. The classical methodology often leads to the choice of conventional plant systems, while our calculation model provides a financial-economic assessment for innovative energy systems and low environmental impact. Computational analysis can help in the design phase, particularly in the case of complex structures with centralized plant systems, by comparing the data returned by the calculation model for different design options.
Keywords: Energy, Buildings, Systems, Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20324142 Experimental Study of Boost Converter Based PV Energy System
Authors: T. Abdelkrim, K. Ben seddik, B. Bezza, K. Benamrane, Aeh. Benkhelifa
Abstract:
This paper proposes an implementation of boost converter for a resistive load using photovoltaic energy as a source. The model of photovoltaic cell and operating principle of boost converter are presented. A PIC microcontroller is used in the close loop control to generate pulses for controlling the converter circuit. To performance evaluation of boost converter, a variation of output voltage of PV panel is done by shading one and two cells.
Keywords: Boost converter, Microcontroller, Photovoltaic power generation, Shading cells.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40094141 Effect of Blade Shape on the Performance of Wells Turbine for Wave Energy Conversion
Authors: Katsuya Takasaki, Manabu Takao, Toshiaki Setoguchi
Abstract:
The effect of a 3-dimensional (3D) blade on the turbine characteristics of Wells turbine for wave energy conversion has been investigated experimentally by model testing under steady flow conditions in this study, in order to improve the peak efficiency and stall characteristics. The aim of use of 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant with radius and the blade profile changes gradually from the mean radius to tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performances of Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimensional (2D) blades. As a result, it was concluded that although the peak efficiency of Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the weakness of stalling.
Keywords: Fluid machinery, ocean engineering, stall, wave energy conversion, Wells turbine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36224140 Quantification of Biomethane Potential from Anaerobic Digestion of Food Waste at Vaal University of Technology
Authors: Kgomotso Matobole, Pascal Mwenge, Tumisang Seodigeng
Abstract:
The global urbanisation and worldwide economic growth have caused a high rate of food waste generation, resulting in environmental pollution. Food waste disposed on landfills decomposes to produce methane (CH4), a greenhouse gas. Inadequate waste management practices contribute to food waste polluting the environment. Thus effective organic fraction of municipal solid waste (OFMSW) management and treatment are attracting widespread attention in many countries. This problem can be minimised by the employment of anaerobic digestion process, since food waste is rich in organic matter and highly biodegradable, resulting in energy generation and waste volume reduction. The current study investigated the Biomethane Potential (BMP) of the Vaal University of Technology canteen food waste using anaerobic digestion. Tests were performed on canteen food waste, as a substrate, with total solids (TS) of 22%, volatile solids (VS) of 21% and moisture content of 78%. The tests were performed in batch reactors, at a mesophilic temperature of 37 °C, with two different types of inoculum, primary and digested sludge. The resulting CH4 yields for both food waste with digested sludge and primary sludge were equal, being 357 Nml/g VS. This indicated that food waste form this canteen is rich in organic and highly biodegradable. Hence it can be used as a substrate for the anaerobic digestion process. The food waste with digested sludge and primary sludge both fitted the first order kinetic model with k for primary sludge inoculated food waste being 0.278 day-1 with R2 of 0.98, whereas k for digested sludge inoculated food waste being 0.034 day-1, with R2 of 0.847.
Keywords: Anaerobic digestion, biogas, biomethane potential, food waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9454139 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria
Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar
Abstract:
Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.
Keywords: Biocapacity, carbon footprint, ecological footprint assessment, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9134138 Challenges to Technological Advancement in Economically Weak Countries: An Assessment of the Nigerian Educational Situation
Authors: Iyabosola B. Oronti, Adeoluwawale A. Adewusi, Israel O. Megbowon
Abstract:
Nigeria is considered as one of the many countries in sub-Saharan Africa with a weak economy and gross deficiencies in technology and engineering. Available data from international monitoring and regulatory organizations show that technology is pivotal to determining the economic strengths of nations all over the world. Education is critical to technology acquisition, development, dissemination and adaptation. Thus, this paper seeks to critically assess and discuss issues and challenges facing technological advancement in Nigeria, particularly in the education sector, and also proffers solutions to resuscitate the Nigerian education system towards achieving national technological and economic sustainability such that Nigeria can compete favourably with other technologicallydriven economies of the world in the not-too-distant future.Keywords: Economically weak countries, education, globalization and competition, technological advancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35314137 An Analysis of the Performances of Various Buoys as the Floats of Wave Energy Converters
Authors: İlkay Özer Erselcan, Abdi Kükner, Gökhan Ceylan
Abstract:
The power generated by eight point absorber type wave energy converters each having a different buoy are calculated in order to investigate the performances of buoys in this study. The calculations are carried out by modeling three different sea states observed in two different locations in the Black Sea. The floats analyzed in this study have two basic geometries and four different draft/radius (d/r) ratios. The buoys possess the shapes of a semi-ellipsoid and a semi-elliptic paraboloid. Additionally, the draft/radius ratios range from 0.25 to 1 by an increment of 0.25. The radiation forces acting on the buoys due to the oscillatory motions of these bodies are evaluated by employing a 3D panel method along with a distribution of 3D pulsating sources in frequency domain. On the other hand, the wave forces acting on the buoys which are taken as the sum of Froude-Krylov forces and diffraction forces are calculated by using linear wave theory. Furthermore, the wave energy converters are assumed to be taut-moored to the seabed so that the secondary body which houses a power take-off system oscillates with much smaller amplitudes compared to the buoy. As a result, it is assumed that there is not any significant contribution to the power generation from the motions of the housing body and the only contribution to power generation comes from the buoy. The power take-off systems of the wave energy converters are high pressure oil hydraulic systems which are identical in terms of their characteristic parameters. The results show that the power generated by wave energy converters which have semi-ellipsoid floats is higher than that of those which have semi elliptic paraboloid floats in both locations and in all sea states. It is also determined that the power generated by the wave energy converters follow an unsteady pattern such that they do not decrease or increase with changing draft/radius ratios of the floats. Although the highest power level is obtained with a semi-ellipsoid float which has a draft/radius ratio equal to 1, other floats of which the draft/radius ratio is 0.25 delivered higher power that the floats with a draft/radius ratio equal to 1 in some cases.Keywords: Black Sea, Buoys, Hydraulic Power Take-Off System, Wave Energy Converters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17284136 Modeling and Simulation of Photovoltaic based LED Lighting System
Authors: Ankit R Patel, Ankit A Patel, Mahesh A Patel, Dhaval R Vyas
Abstract:
Although lighting systems powered by Photovoltaic (PV) cells have existed for many years, they are not widely used, especially in lighting for buildings, due to their high initial cost and low conversion efficiency. One of the technical challenges facing PV powered lighting systems has been how to use dc power generated by the PV module to energize common light sources that are designed to operate efficiently under ac power. Usually, the efficiency of the dc light sources is very poor compared to ac light sources. Rapid developments in LED lighting systems have made this technology a potential candidate for PV powered lighting systems. This study analyzed the efficiency of each component of PV powered lighting systems to identify optimum system configurations for different applications.Keywords: Energy Efficiency, LED, Modeling of systems, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32124135 Gasifier System Identification for Biomass Power Plants using Neural Network
Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai
Abstract:
The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.Keywords: Gasifier System, Identification, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14484134 Improvement of Energy Efficiency using Porous Fins in Heat Exchangers
Authors: Hadi Niknami Esfahani , Hossein Shokouhmand, Fahim Faraji
Abstract:
The forced convection heat transfer in high porosity metal-foam filled tube heat exchangers are studied in this paper. The Brinkman Darcy momentum model and two energy equations for both solid and fluid phases in porous media are employed .The study shows that using metal-foams can significantly improve the heat transfer in heat exchangers.
Keywords: Metal foam, Nusselt number, heat exchanger, heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20634133 Carbon Nanotubes–A Successful Hydrogen Storage Medium
Authors: Vijaya Ilango, Avika Gupta
Abstract:
Hydrogen fuel is a zero-emission fuel which uses electrochemical cells or combustion in internal engines, to power vehicles and electric devices. Methods of hydrogen storage for subsequent use span many approaches, including high pressures, cryogenics and chemical compounds that reversibly release H2 upon heating. Most research into hydrogen storage is focused on storing hydrogen as a lightweight, compact energy carrier for mobile applications. With the accelerating demand for cleaner and more efficient energy sources, hydrogen research has attracted more attention in the scientific community. Until now, full implementation of a hydrogen-based energy system has been hindered in part by the challenge of storing hydrogen gas, especially onboard an automobile. New techniques being researched may soon make hydrogen storage more compact, safe and efficient. In this overview, few hydrogen storage methods and mechanism of hydrogen uptake in carbon nanotubes are summarized.
Keywords: Carbon nanotubes, Chemisorption, Hydrogen storage, Physisorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31624132 Secured Mutual Authentication Protocol for Radio Frequency Identification Systems
Authors: C. Kalamani, S. Sowmiya, S. Dheivambigai, G. Harihara Sudhan
Abstract:
Radio Frequency Identification (RFID) is a blooming technology which uses radio frequency to track the objects. This technology transmits signals between tag and reader to fetch information from the tag with a unique serial identity. Generally, the drawbacks of RFID technology are high cost, high consumption of power and weak authentication systems between a reader and a tag. The proposed protocol utilizes less dynamic power using reversible truncated multipliers which are implemented in RFID tag-reader with mutual authentication protocol system to reduce both leakage and dynamic power consumption. The proposed system was simulated using Xilinx and Cadence tools.Keywords: Mutual authentication, protocol, reversible gates, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6904131 Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications
Authors: N. A. Zambri, A. Mohamed, H. Shareef, M. Z. C. Wanik
Abstract:
This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.
Keywords: Hybrid, Lead–Acid Battery, Maximum Power Point Tracking, Proton Exchange Membrane Fuel Cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31334130 Simulation Tools for Training in the Case of Energy Sector Crisis
Authors: H. Malachova, A. Oulehlova, D. Rezac
Abstract:
Crisis preparedness training is the best possible strategy for identifying weak points, understanding vulnerability, and finding possible strategies for mitigation of blackout consequences. Training represents an effective tool for developing abilities and skills to cope with crisis situations. This article builds on the results of the research carried out in the field of preparation, realization, process, and impacts of training on subjects of energy sector critical infrastructure as a part of crisis preparedness. The research has revealed that the subjects of energy sector critical infrastructure have not realized training and therefore are not prepared for the restoration of the energy supply and black start after blackout regardless of the fact that most subjects state blackout and subsequent black start as key dangers. Training, together with mutual communication and processed crisis documentation, represent a basis for successful solutions for dealing with emergency situations. This text presents the suggested model of SIMEX simulator as a tool which supports managing crisis situations, containing training environment. Training models, possibilities of constructive simulation making use of non-aggregated as well as aggregated entities and tools of communication channels of individual simulator nodes have been introduced by the article.
Keywords: Energetic critical infrastructure, preparedness, training, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8304129 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)
Authors: Adesina, Olusola Joseph
Abstract:
The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper.
Keywords: Development, Efficacy, Learning, Technological Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15324128 On the Efficiency of a Double-Cone Gravitational Motor and Generator
Authors: Barenten Suciu, Akio Miyamura
Abstract:
In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called translational efficiency and rotational efficiency, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency.
Keywords: Truncated double-cone, friction, rolling and sliding, efficiency, gravitational motor and generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9604127 Evaluation of Hybrid Viscoelastic Damper for Passive Energy Dissipation
Authors: S. S. Ghodsi, M. H. Mehrabi, Zainah Ibrahim, Meldi Suhatril
Abstract:
This research examines the performance of a hybrid passive control device for enhancing the seismic response of steel frame structures. The device design comprises a damper which employs a viscoelastic material to control both shear and axial strain. In the design, energy is dissipated through the shear strain of a two-layer system of viscoelastic pads which are located between steel plates. In addition, viscoelastic blocks have been included on either side of the main shear damper which obtains compressive strains in the viscoelastic blocks. These dampers not only dissipate energy but also increase the stiffness of the steel frame structure, and the degree to which they increase the stiffness may be controlled by the size and shape. In this research, the cyclical behavior of the damper was examined both experimentally and numerically with finite element modeling. Cyclic loading results of the finite element modeling reveal fundamental characteristics of this hybrid viscoelastic damper. The results indicate that incorporating a damper of the design can significantly improve the seismic performance of steel frame structures.
Keywords: Cyclic loading, energy dissipation, hybrid damper, passive control system, viscoelastic damper.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8614126 FACTS Based Stabilization for Smart Grid Applications
Authors: Adel M. Sharaf, Foad H. Gandoman
Abstract:
Nowadays, Photovoltaic-PV Farms/ Parks and large PV-Smart Grid Interface Schemes are emerging and commonly utilized in Renewable Energy distributed generation. However, PVhybrid- Dc-Ac Schemes using interface power electronic converters usually has negative impact on power quality and stabilization of modern electrical network under load excursions and network fault conditions in smart grid. Consequently, robust FACTS based interface schemes are required to ensure efficient energy utilization and stabilization of bus voltages as well as limiting switching/fault onrush current condition. FACTS devices are also used in smart grid- Battery Interface and Storage Schemes with PV-Battery Storage hybrid systems as an elegant alternative to renewable energy utilization with backup battery storage for electric utility energy and demand side management to provide needed energy and power capacity under heavy load conditions. The paper presents a robust interface PV-Li-Ion Battery Storage Interface Scheme for Distribution/Utilization Low Voltage Interface using FACTS stabilization enhancement and dynamic maximum PV power tracking controllers. Digital simulation and validation of the proposed scheme is done using MATLAB/Simulink software environment for Low Voltage- Distribution/Utilization system feeding a hybrid Linear-Motorized inrush and nonlinear type loads from a DC-AC Interface VSC-6- pulse Inverter Fed from the PV Park/Farm with a back-up Li-Ion Storage Battery.
Keywords: AC FACTS, Smart grid, Stabilization, PV-Battery Storage, Switched Filter-Compensation (SFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32524125 Investigation of Chlorophylls a and b Interaction with Inner and Outer Surfaces of Single-Walled Carbon Nanotube Using Molecular Dynamics Simulation
Authors: M. Dehestani, M. Ghasemi-Kooch
Abstract:
In this work, adsorption of chlorophylls a and b pigments in aqueous solution on the inner and outer surfaces of single-walled carbon nanotube (SWCNT) has been studied using molecular dynamics simulation. The linear interaction energy algorithm has been used to calculate the binding free energy. The results show that the adsorption of two pigments is fine on the both positions. Although there is the close similarity between these two pigments, their interaction with the nanotube is different. This result is useful to separate these pigments from one another. According to interaction energy between the pigments and carbon nanotube, interaction between these pigments-SWCNT on the inner surface is stronger than the outer surface. The interaction of SWCNT with chlorophylls phytol tail is stronger than the interaction of SWCNT with porphyrin ring of chlorophylls.
Keywords: Dynamic simulation, single walled carbon nanotube, chlorophyll, adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9044124 Optimal Energy Management System for Electrical Vehicles to Further Extend the Range
Authors: M. R. Rouhi, S. Shafiei, A. Taghavipour, H. Adibi-Asl, A. Doosthoseini
Abstract:
This research targets at alleviating the problem of range anxiety associated with the battery electric vehicles (BEVs) by considering mechanical and control aspects of the powertrain. In this way, all the energy consuming components and their effect on reducing the range of the BEV and battery life index are identified. On the other hand, an appropriate control strategy is designed to guarantee the performance of the BEV and the extended electric range which is evaluated by an extensive simulation procedure and a real-world driving schedule.Keywords: Battery, electric vehicles EV, ultra-capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11314123 Wireless Sensor Network: Characteristics and Architectures
Authors: Muhammad R Ahmed, Xu Huang, Dharmandra Sharma, Hongyan Cui
Abstract:
An information procuring and processing emerging technology wireless sensor network (WSN) Consists of autonomous nodes with versatile devices underpinned by applications. Nodes are equipped with different capabilities such as sensing, computing, actuation and wireless communications etc. based on application requirements. A WSN application ranges from military implementation in the battlefield, environmental monitoring, health sector as well as emergency response of surveillance. The nodes are deployed independently to cooperatively monitor the physical and environmental conditions. The architecture of WSN differs based on the application requirements and focus on low cost, flexibility, fault tolerance capability, deployment process as well as conserve energy. In this paper we have present the characteristics, architecture design objective and architecture of WSNKeywords: wireless sensor network, characteristics, architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78264122 Energy Aware Adhoc On-demand Multipath Distance Vector Protocol for QoS Routing
Authors: J. Seetaram, P. Satish Kumar
Abstract:
Mobile Adhoc Networks (MANETs) are infrastructure-less, dynamic network of collections of wireless mobile nodes communicating with each other without any centralized authority. A MANET is a mobile device of interconnections through wireless links, forming a dynamic topology. Routing protocols have a big role in data transmission across a network. Routing protocols, two major classifications are unipath and multipath. This study evaluates performance of an on-demand multipath routing protocol named Adhoc On-demand Multipath Distance Vector routing (AOMDV). This study proposes Energy Aware AOMDV (EAAOMDV) an extension of AOMDV which decreases energy consumed on a route.Keywords: Mobile Adhoc Network (MANET), unipath, multipath, Adhoc On-demand Multipath Distance Vector routing (AOMDV).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21314121 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 1: Overview and Activities in Chemical Processing Facility
Authors: Kazunori Nomura, Hiromichi Ogi, Masaumi Nakahara, Sou Watanabe, Atsuhiro Shibata
Abstract:
Chemical Processing Facility of Japan Atomic Energy Agency is a basic research field for advanced back-end technology developments with using actual high-level radioactive materials such as irradiated fuels from the fast reactor, high-level liquid waste from reprocessing plant. In the nature of a research facility, various kinds of chemical reagents have been offered for fundamental tests. Most of them were treated properly and stored in the liquid waste vessel equipped in the facility, but some were not treated and remained at the experimental space as a kind of legacy waste. It is required to treat the waste in safety. On the other hand, we formulated the Medium- and Long-Term Management Plan of Japan Atomic Energy Agency Facilities. This comprehensive plan considers Chemical Processing Facility as one of the facilities to be decommissioned. Even if the plan is executed, treatment of the “legacy” waste beforehand must be a necessary step for decommissioning operation. Under this circumstance, we launched a collaborative research project called the STRAD project, which stands for Systematic Treatment of Radioactive liquid waste for Decommissioning, in order to develop the treatment processes for wastes of the nuclear research facility. In this project, decomposition methods of chemicals causing a troublesome phenomenon such as corrosion and explosion have been developed and there is a prospect of their decomposition in the facility by simple method. And solidification of aqueous or organic liquid wastes after the decomposition has been studied by adding cement or coagulants. Furthermore, we treated experimental tools of various materials with making an effort to stabilize and to compact them before the package into the waste container. It is expected to decrease the number of transportation of the solid waste and widen the operation space. Some achievements of these studies will be shown in this paper. The project is expected to contribute beneficial waste management outcome that can be shared world widely.
Keywords: Chemical Processing Facility, medium- and long-term management plan of JAEA Facilities, STRAD project, treatment of radioactive waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8884120 The Effect of Damping Treatment for Noise Control on Offshore Platforms Using Statistical Energy Analysis
Authors: Ji Xi, Cheng Song Chin, Ehsan Mesbahi
Abstract:
Structure-borne noise is an important aspect of offshore platform sound field. It can be generated either directly by vibrating machineries induced mechanical force, indirectly by the excitation of structure or excitation by incident airborne noise. Therefore, limiting of the transmission of vibration energy throughout the offshore platform is the key to control the structureborne noise. This is usually done by introducing damping treatment to the steel structures. Two types of damping treatment using onboard are presented. By conducting a Statistical Energy Analysis (SEA) simulation on a jack-up rig, the noise level in the source room, the neighboring rooms, and remote living quarter cabins are compared before and after the damping treatments been applied. The results demonstrated that, in the source neighboring room and living quarter area, there is a significant noise reduction with the damping treatment applied, whereas in the source room where air-borne sound predominates that of structure-borne sound, the impact is not obvious. The conclusion on effective damping treatment in the offshore platform is made which enable acoustic professionals to implement noise control during the design stage for offshore crews’ hearing protection and habitant comfortability.Keywords: Statistical energy analysis, damping treatment, noise control, offshore platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21294119 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery
Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi
Abstract:
Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.
Keywords: Flaring, Fuel gas network, GHG emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13814118 Anomalous Thermal Behavior of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) for LTCC Substrate
Authors: Jyotirmayee Satapathy, M. V. Ramana Reddy
Abstract:
LTCC (Low Temperature Co-fired Ceramics) being the most advantageous technology towards the multilayer substrates for various applications, demands an extensive study of its raw materials. In the present work, a series of CuxMg1-xNb2O6 (x=0,0.4,0.6,1) has been prepared using sol-gel synthesis route and sintered at a temperature of 900°C to study its applicability for LTCC technology as the firing temperature is 900°C in this technology. The phase formation has been confirmed using X-ray Diffraction. Thermal properties like thermal conductivity and thermal expansion being very important aspect as the former defines the heat flow to avoid thermal instability in layers and the later provides the dimensional congruency of the dielectric material and the conductors, are studied here over high temperature up to the firing temperature. Although the values are quite satisfactory from substrate requirement point view, results have shown anomaly over temperature. The anomalous thermal behavior has been further analyzed using TG-DTA.
Keywords: Niobates, LTCC, Thermal conductivity, Thermal expansion, TG-DTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16354117 Financial Technology: The Key to Achieving Financial Inclusion in Developing Countries Post COVID-19 from an East African Perspective
Authors: Yosia Mulumba, Klaus Schmidt
Abstract:
Financial Inclusion is considered a key pillar for development in most countries around the world. Access to affordable financial services in a country’s economy can be a driver to overcome poverty and reduce income inequalities, and thus increase economic growth. Nevertheless, the number of financially excluded populations in developing countries continues to be very high. This paper explores the role of Financial Technology (Fintech) as a key driver for achieving financial inclusion in developing countries post the COVID-19 pandemic with an emphasis on four East African countries: Kenya, Tanzania, Uganda, and Rwanda. The research paper is inspired by the positive disruption caused by the pandemic, which has compelled societies in East Africa to adapt and embrace the use of financial technology innovations, specifically Mobile Money Services (MMS), to access financial services. MMS has been further migrated and integrated with other financial technology innovations such as Mobile Banking, Micro Savings, and Loans, and Insurance, to mention but a few. These innovations have been adopted across key sectors such as commerce, health care, or agriculture. The research paper will highlight the Mobile Network Operators (MNOs) that are behind MMS, along with numerous innovative products and services being offered to the customers. It will also highlight the regulatory framework under which these innovations are being governed to ensure the safety of the customers' funds.
Keywords: Financial inclusion, financial technology, regulatory framework, mobile money services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8114116 Optimization of the Dental Direct Digital Imaging by Applying the Self-Recognition Technology
Authors: Mina Dabirinezhad, Mohsen Bayat Pour, Amin Dabirinejad
Abstract:
This paper is intended to introduce the technology to solve some of the deficiencies of the direct digital radiology. Nowadays, digital radiology is the latest progression in dental imaging, which has become an essential part of dentistry. There are two main parts of the direct digital radiology comprised of an intraoral X-ray machine and a sensor (digital image receptor). The dentists and the dental nurses experience afflictions during the taking image process by the direct digital X-ray machine. For instance, sometimes they need to readjust the sensor in the mouth of the patient to take the X-ray image again due to the low quality of that. Another problem is, the position of the sensor may move in the mouth of the patient and it triggers off an inappropriate image for the dentists. It means that it is a time-consuming process for dentists or dental nurses. On the other hand, taking several the X-ray images brings some problems for the patient such as being harmful to their health and feeling pain in their mouth due to the pressure of the sensor to the jaw. The author provides a technology to solve the above-mentioned issues that is called “Self-Recognition Direct Digital Radiology” (SDDR). This technology is based on the principle that the intraoral X-ray machine is capable to diagnose the location of the sensor in the mouth of the patient automatically. In addition, to solve the aforementioned problems, SDDR technology brings out fewer environmental impacts in comparison to the previous version.
Keywords: Dental direct digital imaging, digital image receptor, digital x-ray machine, and environmental impacts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6104115 Design of Personal Job Recommendation Framework on Smartphone Platform
Authors: Chayaporn Kaensar
Abstract:
Recently, Job Recommender Systems have gained much attention in industries since they solve the problem of information overload on the recruiting website. Therefore, we proposed Extended Personalized Job System that has the capability of providing the appropriate jobs for job seeker and recommending some suitable information for them using Data Mining Techniques and Dynamic User Profile. On the other hands, company can also interact to the system for publishing and updating job information. This system have emerged and supported various platforms such as web application and android mobile application. In this paper, User profiles, Implicit User Action, User Feedback, and Clustering Techniques in WEKA libraries were applied and implemented. In additions, open source tools like Yii Web Application Framework, Bootstrap Front End Framework and Android Mobile Technology were also applied.Keywords: Recommendation, user profile, data mining, web technology, mobile technology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2158