Search results for: learning algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5149

Search results for: learning algorithm

4279 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
4278 Real-time Detection of Space Manipulator Self-collision

Authors: Zhang Xiaodong, Tang Zixin, Liu Xin

Abstract:

In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder-enveloping surface, and then, a kind of detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.

Keywords: Space manipulator, Collision detection, Self-collision, the real-time collision detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
4277 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047
4276 Distributed Load Flow Analysis using Graph Theory

Authors: D. P. Sharma, A. Chaturvedi, G.Purohit , R.Shivarudraswamy

Abstract:

In today scenario, to meet enhanced demand imposed by domestic, commercial and industrial consumers, various operational & control activities of Radial Distribution Network (RDN) requires a focused attention. Irrespective of sub-domains research aspects of RDN like network reconfiguration, reactive power compensation and economic load scheduling etc, network performance parameters are usually estimated by an iterative process and is commonly known as load (power) flow algorithm. In this paper, a simple mechanism is presented to implement the load flow analysis (LFA) algorithm. The reported algorithm utilizes graph theory principles and is tested on a 69- bus RDN.

Keywords: Radial Distribution network, Graph, Load-flow, Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3143
4275 Exploring Self-Directed Learning Among Children

Authors: Mariani Md Nor, Y. Saeednia

Abstract:

Self-directed learning (SDL) was developed initially for adult learning. Guglielmino constructed a scale to measure SDL. Recent researchers have applied this concept to children. Although there are sufficient theoretical evidences to present the possibility of applying this concept to children, empirical evidences were not provided. This study aimed to examine the quality of SDL and construct a scale to measure SDL among young children. A modified scale of Guglielmino-s scale was constructed and piloted with 183 subjects of age 9. Findings suggest that the qualities of SDL in young ages are apparently congruent with that of adults.

Keywords: SDLR, Self-Directed Learning, Young Children.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
4274 The Multi-scenario Knapsack Problem: An Adaptive Search Algorithm

Authors: Mhand Hifi, Hedi Mhalla, Mustapha Michaphy

Abstract:

In this paper, we study the multi-scenario knapsack problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of an adaptive algorithm for solving heuristically the problem. The used method combines two complementary phases: a size reduction phase and a dynamic 2- opt procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for reducing the size problem. Second, the adaptive search procedure is applied in order to attain a feasible solution Finally, the performances of two versions of the proposed algorithm are evaluated on a set of randomly generated instances.

Keywords: combinatorial optimization, max-min optimization, knapsack, heuristics, problem reduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
4273 The Rank-scaled Mutation Rate for Genetic Algorithms

Authors: Mike Sewell, Jagath Samarabandu, Ranga Rodrigo, Kenneth McIsaac

Abstract:

A novel method of individual level adaptive mutation rate control called the rank-scaled mutation rate for genetic algorithms is introduced. The rank-scaled mutation rate controlled genetic algorithm varies the mutation parameters based on the rank of each individual within the population. Thereby the distribution of the fitness of the papulation is taken into consideration in forming the new mutation rates. The best fit mutate at the lowest rate and the least fit mutate at the highest rate. The complexity of the algorithm is of the order of an individual adaptation scheme and is lower than that of a self-adaptation scheme. The proposed algorithm is tested on two common problems, namely, numerical optimization of a function and the traveling salesman problem. The results show that the proposed algorithm outperforms both the fixed and deterministic mutation rate schemes. It is best suited for problems with several local optimum solutions without a high demand for excessive mutation rates.

Keywords: Genetic algorithms, mutation rate control, adaptive mutation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2669
4272 Off-Line Hand Written Thai Character Recognition using Ant-Miner Algorithm

Authors: P. Phokharatkul, K. Sankhuangaw, S. Somkuarnpanit, S. Phaiboon, C. Kimpan

Abstract:

Much research into handwritten Thai character recognition have been proposed, such as comparing heads of characters, Fuzzy logic and structure trees, etc. This paper presents a system of handwritten Thai character recognition, which is based on the Ant-minor algorithm (data mining based on Ant colony optimization). Zoning is initially used to determine each character. Then three distinct features (also called attributes) of each character in each zone are extracted. The attributes are Head zone, End point, and Feature code. All attributes are used for construct the classification rules by an Ant-miner algorithm in order to classify 112 Thai characters. For this experiment, the Ant-miner algorithm is adapted, with a small change to increase the recognition rate. The result of this experiment is a 97% recognition rate of the training set (11200 characters) and 82.7% recognition rate of unseen data test (22400 characters).

Keywords: Hand written, Thai character recognition, Ant-mineralgorithm, distinct feature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
4271 Proposing Problem-Based Learning as an Effective Pedagogical Technique for Social Work Education

Authors: Christine K. Fulmer

Abstract:

Social work education is competency based in nature. There is an expectation that graduates of social work programs throughout the world are to be prepared to practice at a level of competence, which is beneficial to both the well-being of individuals and community. Experiential learning is one way to prepare students for competent practice. The use of Problem-Based Learning (PBL) is a form experiential education that has been successful in a number of disciplines to bridge the gap between the theoretical concepts in the classroom to the real world. PBL aligns with the constructivist theoretical approach to learning, which emphasizes the integration of new knowledge with the beliefs students already hold. In addition, the basic tenants of PBL correspond well with the practice behaviors associated with social work practice including multi-disciplinary collaboration and critical thinking. This paper makes an argument for utilizing PBL in social work education.

Keywords: Constructivist theoretical approach, experiential learning, pedagogy, problem-based learning, social work education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
4270 High Capacity Spread-Spectrum Watermarking for Telemedicine Applications

Authors: Basant Kumar, Animesh Anand, S.P. Singh, Anand Mohan

Abstract:

This paper presents a new spread-spectrum watermarking algorithm for digital images in discrete wavelet transform (DWT) domain. The algorithm is applied for embedding watermarks like patient identification /source identification or doctors signature in binary image format into host digital radiological image for potential telemedicine applications. Performance of the algorithm is analysed by varying the gain factor, subband decomposition levels, and size of watermark. Simulation results show that the proposed method achieves higher watermarking capacity.

Keywords: Watermarking, spread-spectrum, discrete wavelettransform, telemedicine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219
4269 Flipped Learning Application on the Development of Capabilities for Civil Engineering Education in Labs

Authors: Hector Barrios-Piña, Georgia García-Arellano, Salvador García-Rodríguez, Gerardo Bocanegra-García, Shashi Kant

Abstract:

This work shows the methodology of application and the effectiveness of the Flipped Learning technique for Civil Engineering laboratory classes. It was experimented by some of the professors of the Department of Civil Engineering at Tecnológico de Monterrey while teaching their laboratory classes. A total of 28 videos were created. The videos primarily demonstrate instructions of the experimental practices other than the usage of tools and materials. The technique allowed the students to prepare for their classes in advance. A survey was conducted on the participating professors and students (semester of August-December 2019) to quantify the effectiveness of the Flipped Learning technique. The students reported it as an excellent way of improving their learning aptitude, including self-learning whereas, the professors felt it as an efficient technique for optimizing their class session, which also provided an extra slot for class-interaction. A comparison of grades was analyzed between the students of the traditional classes and with Flipped Learning. It did not distinguish the benefits of Flipped Learning. However, the positive responses from the students and the professors provide an impetus for continuing and promoting the Flipped Learning technique in future classes.

Keywords: Flipped learning, laboratory classes, educational innovation, civil engineering, higher education, competences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
4268 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
4267 A Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem

Authors: C. Chitra, P. Subbaraj

Abstract:

The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive for solving problems with multiple and conflicting objectives. This paper uses an elitist multiobjective evolutionary algorithm based on the Non-dominated Sorting Genetic Algorithm (NSGA), for solving the dynamic shortest path routing problem in computer networks. A priority-based encoding scheme is proposed for population initialization. Elitism ensures that the best solution does not deteriorate in the next generations. Results for a sample test network have been presented to demonstrate the capabilities of the proposed approach to generate well-distributed pareto-optimal solutions of dynamic routing problem in one single run. The results obtained by NSGA are compared with single objective weighting factor method for which Genetic Algorithm (GA) was applied.

Keywords: Multiobjective optimization, Non-dominated Sorting Genetic Algorithm, Routing, Weighted sum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
4266 Personalized Learning: An Analysis Using Item Response Theory

Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah

Abstract:

Personalized learning becomes increasingly popular which not be restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability.The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT,it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores.Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.

Keywords: Analysis, Cognitive Load Theory, Item Response Theory, Learning, Motivation, Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119
4265 King Bhumibol Adulyadej’s “Learn Wisely” Concept: An Application to Instructional Design

Authors: Rossukhon Makaramani, Supanan Sittilerd

Abstract:

This study is about an application of King Bhumibol Adulyadej’s “Learn Wisely” (LW) concept in instructional design and management process at the Faculty of Education, Suan Sunahdha Rajabhat University. The concept suggests four strategies for true learning. Related literature and significant LW methods in teaching and learning are also reviewed and then applied in designing a pedagogy learning module. The design has been implemented in three classrooms with a total of 115 sophomore student teachers. After one consecutive semester of managing and adjusting the process by instructors and experts using collected data from minutes, assessment of learning management, satisfaction and learning achievement of the students, it is found that the effective SSRU model of LW instructional method comprises of five steps.

Keywords: Instructional Design, Learn Wisely Strategy, Pedagogy Learning Module, Teaching Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
4264 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
4263 Embodied Cognition and Its Implications in Education: An Overview of Recent Literature

Authors: Panagiotis Kosmas, Panayiotis Zaphiris

Abstract:

Embodied Cognition (EC) as a learning paradigm is based on the idea of an inseparable link between body, mind, and environment. In recent years, the advent of theoretical learning approaches around EC theory has resulted in a number of empirical studies exploring the implementation of the theory in education. This systematic literature overview identifies the mainstream of EC research and emphasizes on the implementation of the theory across learning environments. Based on a corpus of 43 manuscripts, published between 2013 and 2017, it sets out to describe the range of topics covered under the umbrella of EC and provides a holistic view of the field. The aim of the present review is to investigate the main issues in EC research related to the various learning contexts. Particularly, the study addresses the research methods and technologies that are utilized, and it also explores the integration of body into the learning context. An important finding from the overview is the potential of the theory in different educational environments and disciplines. However, there is a lack of an explicit pedagogical framework from an educational perspective for a successful implementation in various learning contexts.

Keywords: Embodied cognition, embodied learning, education, technology, schools.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
4262 Online Collaborative Learning System Using Speech Technology

Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy

Abstract:

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
4261 An Observer-Based Direct Adaptive Fuzzy Sliding Control with Adjustable Membership Functions

Authors: Alireza Gholami, Amir H. D. Markazi

Abstract:

In this paper, an observer-based direct adaptive fuzzy sliding mode (OAFSM) algorithm is proposed. In the proposed algorithm, the zero-input dynamics of the plant could be unknown. The input connection matrix is used to combine the sliding surfaces of individual subsystems, and an adaptive fuzzy algorithm is used to estimate an equivalent sliding mode control input directly. The fuzzy membership functions, which were determined by time consuming try and error processes in previous works, are adjusted by adaptive algorithms. The other advantage of the proposed controller is that the input gain matrix is not limited to be diagonal, i.e. the plant could be over/under actuated provided that controllability and observability are preserved. An observer is constructed to directly estimate the state tracking error, and the nonlinear part of the observer is constructed by an adaptive fuzzy algorithm. The main advantage of the proposed observer is that, the measured outputs is not limited to the first entry of a canonical-form state vector. The closed-loop stability of the proposed method is proved using a Lyapunov-based approach. The proposed method is applied numerically on a multi-link robot manipulator, which verifies the performance of the closed-loop control. Moreover, the performance of the proposed algorithm is compared with some conventional control algorithms.

Keywords: Adaptive algorithm, fuzzy systems, membership functions, observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
4260 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants

Authors: Rahib Hidayat Abiyev

Abstract:

This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
4259 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
4258 Defining Programming Problems as Learning Objects

Authors: José Paulo Leal, Ricardo Queirós

Abstract:

Standards for learning objects focus primarily on content presentation. They were already extended to support automatic evaluation but it is limited to exercises with a predefined set of answers. The existing standards lack the metadata required by specialized evaluators to handle types of exercises with an indefinite set of solutions. To address this issue existing learning object standards were extended to the particular requirements of a specialized domain. A definition of programming problems as learning objects, compatible both with Learning Management Systems and with systems performing automatic evaluation of programs, is presented in this paper. The proposed definition includes metadata that cannot be conveniently represented using existing standards, such as: the type of automatic evaluation; the requirements of the evaluation engine; and the roles of different assets - tests cases, program solutions, etc. The EduJudge project and its main services are also presented as a case study on the use of the proposed definition of programming problems as learning objects.

Keywords: Content Packaging, eLearning Services, Interoperability, Learning Objects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
4257 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
4256 Investments Attractiveness via Combinatorial Optimization Ranking

Authors: Ivan C. Mustakerov, Daniela I. Borissova

Abstract:

The paper proposes an approach to ranking a set of potential countries to invest taking into account the investor point of view about importance of different economic indicators. For the goal, a ranking algorithm that contributes to rational decision making is proposed. The described algorithm is based on combinatorial optimization modeling and repeated multi-criteria tasks solution. The final result is list of countries ranked in respect of investor preferences about importance of economic indicators for investment attractiveness. Different scenarios are simulated conforming to different investors preferences. A numerical example with real dataset of indicators is solved. The numerical testing shows the applicability of the described algorithm. The proposed approach can be used with any sets of indicators as ranking criteria reflecting different points of view of investors. 

Keywords: Combinatorial optimization modeling, economics investment attractiveness, economics ranking algorithm, multi-criteria problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
4255 A Dynamic Filter for Removal DC - Offset In Current and Voltage Waveforms

Authors: Khaled M.EL-Naggar

Abstract:

In power systems, protective relays must filter their inputs to remove undesirable quantities and retain signal quantities of interest. This job must be performed accurate and fast. A new method for filtering the undesirable components such as DC and harmonic components associated with the fundamental system signals. The method is s based on a dynamic filtering algorithm. The filtering algorithm has many advantages over some other classical methods. It can be used as dynamic on-line filter without the need of parameters readjusting as in the case of classic filters. The proposed filter is tested using different signals. Effects of number of samples and sampling window size are discussed. Results obtained are presented and discussed to show the algorithm capabilities.

Keywords: Protection, DC-offset, Dynamic Filter, Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3760
4254 Microwave Imaging by Application of Information Theory Criteria in MUSIC Algorithm

Authors: M. Pourahmadi

Abstract:

The performance of time-reversal MUSIC algorithm will be dramatically degrades in presence of strong noise and multiple scattering (i.e. when scatterers are close to each other). This is due to error in determining the number of scatterers. The present paper provides a new approach to alleviate such a problem using an information theoretic criterion referred as minimum description length (MDL). The merits of the novel approach are confirmed by the numerical examples. The results indicate the time-reversal MUSIC yields accurate estimate of the target locations with considerable noise and multiple scattering in the received signals.

Keywords: Microwave imaging, Time reversal, MUSIC algorithm, Minimum Description Length (MDL).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
4253 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements

Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath

Abstract:

Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.

Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
4252 A Blind SLM Scheme for Reduction of PAPR in OFDM Systems

Authors: K. Kasiri, M. J. Dehghani

Abstract:

In this paper we propose a blind algorithm for peakto- average power ratio (PAPR) reduction in OFDM systems, based on selected mapping (SLM) algorithm as a distortionless method. The main drawback of the conventional SLM technique is the need for transmission of several side information bits, for each data block, which results in loss in data rate transmission. In the proposed method some special number of carriers in the OFDM frame is reserved to be rotated with one of the possible phases according to the number of phase sequence blocks in SLM algorithm. Reserving some limited number of carriers wont effect the reduction in PAPR of OFDM signal. Simulation results show using ML criteria at the receiver will lead to the same system-performance as the conventional SLM algorithm, while there is no need to send any side information to the receiver.

Keywords: Orthogonal Frequency Division Multiplexing(OFDM), Peak-to-Average Power Ratio (PAPR), Selected Mapping(SLM), Blind SLM (BSLM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
4251 Pharmacology Applied Learning Program in Preclinical Years – Student Perspectives

Authors: Amudha Kadirvelu, Sunil Gurtu, Sivalal Sadasivan

Abstract:

Pharmacology curriculum plays an integral role in medical education. Learning pharmacology to choose and prescribe drugs is a major challenge encountered by students. We developed pharmacology applied learning activities for first year medical students that included realistic clinical situations with escalating complications which required the students to analyze the situation and think critically to choose a safe drug. Tutor feedback was provided at the end of session. Evaluation was done to assess the students- level of interest and usefulness of the sessions in rational selection of drugs. Majority (98 %) of the students agreed that the session was an extremely useful learning exercise and agreed that similar sessions would help in rational selection of drugs. Applied learning sessions in the early years of medical program may promote deep learning and bridge the gap between pharmacology theory and clinical practice. Besides, it may also enhance safe prescribing skills.

Keywords: Medical education, pharmacology curriculum, applied learning, safe prescribing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
4250 A Neuroscience-Based Learning Technique: Framework and Application to STEM

Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes

Abstract:

Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.

Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1015