Search results for: industrial machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2228

Search results for: industrial machine

2168 Designing Ontology-Based Knowledge Integration for Preprocessing of Medical Data in Enhancing a Machine Learning System for Coding Assignment of a Multi-Label Medical Text

Authors: Phanu Waraporn

Abstract:

This paper discusses the designing of knowledge integration of clinical information extracted from distributed medical ontologies in order to ameliorate a machine learning-based multilabel coding assignment system. The proposed approach is implemented using a decision tree technique of the machine learning on the university hospital data for patients with Coronary Heart Disease (CHD). The preliminary results obtained show a satisfactory finding that the use of medical ontologies improves the overall system performance.

Keywords: Medical Ontology, Knowledge Integration, Machine Learning, Medical Coding, Text Assignment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
2167 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: Data analytics, green production, industrial energy management, optimization, renewable energies, simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
2166 Design and Simulation of Low Speed Axial Flux Permanent Magnet (AFPM) Machine

Authors: Ahmad Darabi, Hassan Moradi, Hossein Azarinfar

Abstract:

In this paper presented initial design of Low Speed Axial Flux Permanent Magnet (AFPM) Machine with Non-Slotted TORUS topology type by use of certain algorithm (Appendix). Validation of design algorithm studied by means of selected data of an initial prototype machine. Analytically design calculation carried out by means of design algorithm and obtained results compared with results of Finite Element Method (FEM).

Keywords: Axial Flux Permanent Magnet (AFPM) Machine, Design Algorithm, Finite Element Method (FEM), TORUS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
2165 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children

Authors: Norah Alshahrani, Abdulaziz Almaleh

Abstract:

Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD: Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by SVM, achieving 0.98% in the toddler dataset and 0.99% in the children dataset.

Keywords: Autism Spectrum Disorder, ASD, Machine Learning, ML, Feature Selection, Support Vector Machine, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
2164 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
2163 Study of Syntactic Errors for Deep Parsing at Machine Translation

Authors: Yukiko Sasaki Alam, Shahid Alam

Abstract:

Syntactic parsing is vital for semantic treatment by many applications related to natural language processing (NLP), because form and content coincide in many cases. However, it has not yet reached the levels of reliable performance. By manually examining and analyzing individual machine translation output errors that involve syntax as well as semantics, this study attempts to discover what is required for improving syntactic and semantic parsing.

Keywords: Machine translation, error analysis, syntactic errors, knowledge required for parsing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
2162 Cardiac Disorder Classification Based On Extreme Learning Machine

Authors: Chul Kwak, Oh-Wook Kwon

Abstract:

In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.

Keywords: Heart sound classification, extreme learning machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
2161 Touristification of Industrial Waterfronts: The Rocks and Darling Harbour

Authors: Ece Kaya

Abstract:

Industrial heritage reflects the traces of an industrial past that have contributed to the economic development of a country. This heritage should be included within the scope of preservation to remind of and to connect the city and its inhabitants to the past. Through adaptive conservation, industrial heritage can be reintroduced into contemporary urban life, with suitable functions and unique identities sustained. The conservation of industrial heritage should protect the material fabric of such heritage and maintain its cultural significance. Emphasising the historical and cultural significance of industrial areas, this research argues that industrial heritage is primarily impacted by political and economic thinking rather than by informed heritage and conservation issues. Waterfront redevelopment projects create similar landscapes around the world, transforming industrial identities and cultural significances. In the case of The Rocks and Darling Harbour, the goal of redevelopment was the creation of employment opportunities, and the provision of places to work, live and shop, through tourism promoted by the NSW State Government. The two case study areas were pivotal to the European industrial development of Sydney. Sydney Cove was one of the largest commercial wharves used to handle cargo in Australia. This paper argues, together with many historians, planners and heritage experts, that these areas have not received the due diligence deserved in regards to their significance to the industrial history of Sydney and modern Australia.

Keywords: Industrial heritage, post-industrial city, transformation of waterfronts, tourism, consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
2160 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-Commerce, Logistics, Machine Learning, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
2159 Safety of Industrial Networks

Authors: P. Vazan, P. Tanuska, M. Kebisek, S. Duchovicova

Abstract:

The paper deals with communication standards for control and production system. The authors formulate the requirements for communication security protection. The paper is focused on application protocols of the industrial networks and their basic classification. The typical attacks are analysed and the safety protection, based on requirements for specific industrial network is suggested and defined in this paper.

Keywords: Application protocols, communication standards, industrial networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2158 Modal Analysis of Machine Tool Column Using Finite Element Method

Authors: Migbar Assefa

Abstract:

The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.

Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5036
2157 Finite Element Prediction on the Machining Stability of Milling Machine with Experimental Verification

Authors: Jui P. Hung, Yuan L. Lai, Hui T. You

Abstract:

Chatter vibration has been a troublesome problem for a machine tool toward the high precision and high speed machining. Essentially, the machining performance is determined by the dynamic characteristics of the machine tool structure and dynamics of cutting process, which can further be identified in terms of the stability lobe diagram. Therefore, realization on the machine tool dynamic behavior can help to enhance the cutting stability. To assess the dynamic characteristics and machining stability of a vertical milling system under the influence of a linear guide, this study developed a finite element model integrated the modeling of linear components with the implementation of contact stiffness at the rolling interface. Both the finite element simulations and experimental measurements reveal that the linear guide with different preload greatly affects the vibration behavior and milling stability of the vertical column spindle head system, which also clearly indicate that the predictions of the machining stability agree well with the cutting tests. It is believed that the proposed model can be successfully applied to evaluate the dynamics performance of machine tool systems of various configurations.

Keywords: Machining stability, Vertical milling machine, Linearguide, Contact stiffness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2644
2156 Identification of Industrial Health Using ANN

Authors: Deepak Goswami, Padma Lochan Hazarika, Kandarpa Kumar Sarma

Abstract:

The customary practice of identifying industrial sickness is a set traditional techniques which rely upon a range of manual monitoring and compilation of financial records. It makes the process tedious, time consuming and often are susceptible to manipulation. Therefore, certain readily available tools are required which can deal with such uncertain situations arising out of industrial sickness. It is more significant for a country like India where the fruits of development are rarely equally distributed. In this paper, we propose an approach based on Artificial Neural Network (ANN) to deal with industrial sickness with specific focus on a few such units taken from a less developed north-east (NE) Indian state like Assam. The proposed system provides decision regarding industrial sickness using eight different parameters which are directly related to the stages of sickness of such units. The mechanism primarily uses certain signals and symptoms of industrial health to decide upon the state of a unit. Specifically, we formulate an ANN based block with data obtained from a few selected units of Assam so that required decisions related to industrial health could be taken. The system thus formulated could become an important part of planning and development. It can also contribute towards computerization of decision support systems related to industrial health and help in better management.

Keywords: Industrial, Health, Classification, ANN, MLP, MSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
2155 An Exhaustive Review of Die Sinking Electrical Discharge Machining Process and Scope for Future Research

Authors: M. M. Pawade, S. S. Banwait

Abstract:

Electrical Discharge Machine (EDM) is especially used for the manufacturing of 3-D complex geometry and hard material parts that are extremely difficult-to-machine by conventional machining processes. In this paper authors review the research work carried out in the development of die-sinking EDM within the past decades for the improvement of machining characteristics such as Material Removal Rate, Surface Roughness and Tool Wear Ratio. In this review various techniques reported by EDM researchers for improving the machining characteristics have been categorized as process parameters optimization, multi spark technique, powder mixed EDM, servo control system and pulse discriminating. At the end, flexible machine controller is suggested for Die Sinking EDM to enhance the machining characteristics and to achieve high-level automation. Thus, die sinking EDM can be integrated with Computer Integrated Manufacturing environment as a need of agile manufacturing systems.

Keywords: Electrical Discharge Machine, Flexible Machine Controller, Material Removal Rate, Tool Wear Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5295
2154 Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine

Authors: Soe Sandar Aung, Han Phyo Wai, Nyein Nyein Soe

Abstract:

The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.

Keywords: Induction Heating, Resonant Circuit, InverterCircuit, Coil Design, Induction Hardening Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22283
2153 Estimating Word Translation Probabilities for Thai – English Machine Translation using EM Algorithm

Authors: Chutchada Nusai, Yoshimi Suzuki, Haruaki Yamazaki

Abstract:

Selecting the word translation from a set of target language words, one that conveys the correct sense of source word and makes more fluent target language output, is one of core problems in machine translation. In this paper we compare the 3 methods of estimating word translation probabilities for selecting the translation word in Thai – English Machine Translation. The 3 methods are (1) Method based on frequency of word translation, (2) Method based on collocation of word translation, and (3) Method based on Expectation Maximization (EM) algorithm. For evaluation we used Thai – English parallel sentences generated by NECTEC. The method based on EM algorithm is the best method in comparison to the other methods and gives the satisfying results.

Keywords: Machine translation, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
2152 The Evolving Customer Experience Management Landscape: A Case Study on the Paper Machine Companies

Authors: Babak Mohajeri, Sen Bao, Timo Nyberg

Abstract:

Customer experience is increasingly the differentiator between successful companies and those who struggle. Currently, customer experiences become more dynamic; and they advance with each interaction between the company and a customer. Every customer conversation and any effort to evolve these conversations would be beneficial and should ultimately result in a positive customer experience. The aim of this paper is to analyze the evolving customer experience management landscape and the relevant challenges and opportunities. A case study on the “paper machine” companies is chosen. Hence, this paper analyzes the challenges and opportunities in customer experience management of paper machine companies for the case of “road to steel”. Road to steel shows the journey of steel from raw material to end product (i.e. paper machine in this paper). ALPHA (Steel company) and BETA (paper machine company), are chosen and their efforts to evolve the customer experiences are investigated. Semi-structured interviews are conducted with experts in those companies to identify the challenges and opportunities of the evolving customer experience management from their point of view. The findings of this paper contribute to the theory and business practices in the realm of the evolving customer experience management landscape.

Keywords: Customer experience management, paper machine risk analysis, value chain management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
2151 Quality Culture Framework Proposal for Libyan Industrial Companies

Authors: Mostafa Ahmed Shokshok

Abstract:

Libyan industrial companies face many challenges in today's competitive market. Quality management culture approaches is one of these challenges which may furnish the road to the Libyan industrial companies to effectively empower their employees and improve their ability to respond to the international competition. The primary objective of this paper is to design a practical approach to guide Libyan industrial companies toward successful quality culture implementation.

Keywords: Libyan manufacturing industries, TQM, Quality culture, Quality framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2141
2150 Machine Vision System for Automatic Weeding Strategy in Oil Palm Plantation using Image Filtering Technique

Authors: Kamarul Hawari Ghazali, Mohd. Marzuki Mustafa, Aini Hussain

Abstract:

Machine vision is an application of computer vision to automate conventional work in industry, manufacturing or any other field. Nowadays, people in agriculture industry have embarked into research on implementation of engineering technology in their farming activities. One of the precision farming activities that involve machine vision system is automatic weeding strategy. Automatic weeding strategy in oil palm plantation could minimize the volume of herbicides that is sprayed to the fields. This paper discusses an automatic weeding strategy in oil palm plantation using machine vision system for the detection and differential spraying of weeds. The implementation of vision system involved the used of image processing technique to analyze weed images in order to recognized and distinguished its types. Image filtering technique has been used to process the images as well as a feature extraction method to classify the type of weed images. As a result, the image processing technique contributes a promising result of classification to be implemented in machine vision system for automated weeding strategy.

Keywords: Machine vision, Automatic Weeding Strategy, filter, feature extraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
2149 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine

Authors: H. M. El-Zomor, M. Hany

Abstract:

Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.

Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
2148 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: Electric machine, electric motor, electromagnet, efficiency of electric motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
2147 Lean Production to Increase Reproducibility and Work Safety in the Laser Beam Melting Process Chain

Authors: C. Bay, A. Mahr, H. Groneberg, F. Döpper

Abstract:

Additive Manufacturing processes are becoming increasingly established in the industry for the economic production of complex prototypes and functional components. Laser beam melting (LBM), the most frequently used Additive Manufacturing technology for metal parts, has been gaining in industrial importance for several years. The LBM process chain – from material storage to machine set-up and component post-processing – requires many manual operations. These steps often depend on the manufactured component and are therefore not standardized. These operations are often not performed in a standardized manner, but depend on the experience of the machine operator, e.g., levelling of the build plate and adjusting the first powder layer in the LBM machine. This lack of standardization limits the reproducibility of the component quality. When processing metal powders with inhalable and alveolar particle fractions, the machine operator is at high risk due to the high reactivity and the toxic (e.g., carcinogenic) effect of the various metal powders. Faulty execution of the operation or unintentional omission of safety-relevant steps can impair the health of the machine operator. In this paper, all the steps of the LBM process chain are first analysed in terms of their influence on the two aforementioned challenges: reproducibility and work safety. Standardization to avoid errors increases the reproducibility of component quality as well as the adherence to and correct execution of safety-relevant operations. The corresponding lean method 5S will therefore be applied, in order to develop approaches in the form of recommended actions that standardize the work processes. These approaches will then be evaluated in terms of ease of implementation and their potential for improving reproducibility and work safety. The analysis and evaluation showed that sorting tools and spare parts as well as standardizing the workflow are likely to increase reproducibility. Organizing the operational steps and production environment decreases the hazards of material handling and consequently improves work safety.

Keywords: Additive manufacturing, lean production, reproducibility, work safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
2146 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
2145 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
2144 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
2143 Design and Implementation of an AI-Enabled Task Assistance and Management System

Authors: Arun Prasad Jaganathan

Abstract:

In today's dynamic industrial world, traditional task allocation methods often fall short in adapting to evolving operational conditions. This paper presents an AI-enabled task assistance and management system designed to overcome the limitations of conventional approaches. By using artificial intelligence (AI) and machine learning (ML), the system intelligently interprets user instructions, analyzes tasks, and allocates resources based on real-time data and environmental factors. Additionally, geolocation tracking enables proactive identification of potential delays, ensuring timely interventions. With its transparent reporting mechanisms, the system provides stakeholders with clear insights into task progress, fostering accountability and informed decision-making. The paper presents a comprehensive overview of the system architecture, algorithm, and implementation, highlighting its potential to revolutionize task management across diverse industries.

Keywords: Artificial intelligence, machine learning, task allocation, operational efficiency, resource optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74
2142 Double Aperture Camera for High Resolution Measurement

Authors: Venkatesh Bagaria, Nagesh AS, Varun AV

Abstract:

In the domain of machine vision, the measurement of length is done using cameras where the accuracy is directly proportional to the resolution of the camera and inversely to the size of the object. Since most of the pixels are wasted imaging the entire body as opposed to just imaging the edges in a conventional system, a double aperture system is constructed to focus on the edges to measure at higher resolution. The paper discusses the complexities and how they are mitigated to realize a practical machine vision system.

Keywords: Machine Vision, double aperture camera, accurate length measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2141 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe

Abstract:

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Keywords: Decision making, Machine learning, Strategy, Ayo game.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
2140 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2139 Analysis of Synchronous Machine Excitation Systems: Comparative Study

Authors: Shewit Tsegaye, Kinde A. Fante

Abstract:

This paper presents the comparison and performance evaluation of synchronous machine excitation models. The two models, DC1A and AC4A, are among the IEEE standardized model structures for representing the wide variety of synchronous machine excitation systems. The performance evaluation of these models is done using SIMULINK simulation software. The simulation results obtained using transient analysis show that the DC1A excitation system is more reliable and stable than AC4A excitation system.

Keywords: Excitation system, synchronous machines, AC and DC regulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3883