Search results for: document categorization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 308

Search results for: document categorization

248 Multi-agent Data Fusion Architecture for Intelligent Web Information Retrieval

Authors: Amin Milani Fard, Mohsen Kahani, Reza Ghaemi, Hamid Tabatabaee

Abstract:

In this paper we propose a multi-agent architecture for web information retrieval using fuzzy logic based result fusion mechanism. The model is designed in JADE framework and takes advantage of JXTA agent communication method to allow agent communication through firewalls and network address translators. This approach enables developers to build and deploy P2P applications through a unified medium to manage agent-based document retrieval from multiple sources.

Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
247 Mining News Sites to Create Special Domain News Collections

Authors: David B. Bracewell, Fuji Ren, Shingo Kuroiwa

Abstract:

We present a method to create special domain collections from news sites. The method only requires a single sample article as a seed. No prior corpus statistics are needed and the method is applicable to multiple languages. We examine various similarity measures and the creation of document collections for English and Japanese. The main contributions are as follows. First, the algorithm can build special domain collections from as little as one sample document. Second, unlike other algorithms it does not require a second “general" corpus to compute statistics. Third, in our testing the algorithm outperformed others in creating collections made up of highly relevant articles.

Keywords: Information Retrieval, News, Special DomainCollections,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
246 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
245 An Empirical Analysis of Earnings Management in Australia

Authors: Lan Sun, Subhrendu Rath

Abstract:

This is a comprehensive large-sample study of Australian earnings management. Using a sample of 4,844 firm-year observations across nine Australia industries from 2000 to 2006, we find substantial corporate earnings management activity across several Australian industries. We document strong evidence of size and return on assets being primary determinants of earnings management in Australia. The effects of size and return on assets are also found to be dominant in both income-increasing and incomedecreasing earnings manipulation. We also document that that periphery sector firms are more likely to involve larger magnitude of earnings management than firms in the core sector.

Keywords: Earnings management, discretionary accruals, income-increasing/decreasing manipulation, dual economy sector

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3739
244 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
243 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features

Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli

Abstract:

Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.

Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
242 Extraction of Significant Phrases from Text

Authors: Yuan J. Lui

Abstract:

Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.

Keywords: classification, keyphrase extraction, machine learning, summarization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
241 Compression of Semistructured Documents

Authors: Leo Galambos, Jan Lansky, Katsiaryna Chernik

Abstract:

EGOTHOR is a search engine that indexes the Web and allows us to search the Web documents. Its hit list contains URL and title of the hits, and also some snippet which tries to shortly show a match. The snippet can be almost always assembled by an algorithm that has a full knowledge of the original document (mostly HTML page). It implies that the search engine is required to store the full text of the documents as a part of the index. Such a requirement leads us to pick up an appropriate compression algorithm which would reduce the space demand. One of the solutions could be to use common compression methods, for instance gzip or bzip2, but it might be preferable if we develop a new method which would take advantage of the document structure, or rather, the textual character of the documents. There already exist a special compression text algorithms and methods for a compression of XML documents. The aim of this paper is an integration of the two approaches to achieve an optimal level of the compression ratio

Keywords: Compression, search engine, HTML, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
240 Simultaneous Segmentation and Recognition of Arabic Characters in an Unconstrained On-Line Cursive Handwritten Document

Authors: Randa I. Elanwar, Mohsen A. Rashwan, Samia A. Mashali

Abstract:

The last two decades witnessed some advances in the development of an Arabic character recognition (CR) system. Arabic CR faces technical problems not encountered in any other language that make Arabic CR systems achieve relatively low accuracy and retards establishing them as market products. We propose the basic stages towards a system that attacks the problem of recognizing online Arabic cursive handwriting. Rule-based methods are used to perform simultaneous segmentation and recognition of word portions in an unconstrained cursively handwritten document using dynamic programming. The output of these stages is in the form of a ranked list of the possible decisions. A new technique for text line separation is also used.

Keywords: Arabic handwriting, character recognition, cursive handwriting, on-line recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
239 IFDewey: A New Insert-Friendly Labeling Schemafor XML Data

Authors: S. Soltan, A. Zarnani, R. AliMohammadzadeh, M. Rahgozar

Abstract:

XML has become a popular standard for information exchange via web. Each XML document can be presented as a rooted, ordered, labeled tree. The Node label shows the exact position of a node in the original document. Region and Dewey encoding are two famous methods of labeling trees. In this paper, we propose a new insert friendly labeling method named IFDewey based on recently proposed scheme, called Extended Dewey. In Extended Dewey many labels must be modified when a new node is inserted into the XML tree. Our method eliminates this problem by reserving even numbers for future insertion. Numbers generated by Extended Dewey may be even or odd. IFDewey modifies Extended Dewey so that only odd numbers are generated and even numbers can then be used for a much easier insertion of nodes.

Keywords: XML, tree labeling, query processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
238 Software Engineering Interoperable Environment for University Process Workflow and Document Management

Authors: Bekim Fetaji, Majlinda Fetaji, Mirlinda Ebibi

Abstract:

The objective of the research was focused on the design, development and evaluation of a sustainable web based network system to be used as an interoperable environment for University process workflow and document management. In this manner the most of the process workflows in Universities can be entirely realized electronically and promote integrated University. Definition of the most used University process workflows enabled creating electronic workflows and their execution on standard workflow execution engines. Definition or reengineering of workflows provided increased work efficiency and helped in having standardized process through different faculties. The concept and the process definition as well as the solution applied as Case study are evaluated and findings are reported.

Keywords: design process workflows, workflow and documentmanagement, Business Process, software engineering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
237 Identification of Most Frequently Occurring Lexis in Body-enhancement Medicinal Unsolicited Bulk e-mails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of more than 2700 body enhancement medicinal UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the UBE documents that advertise various products for body enhancement. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexis-set in the given UBE and the probability that the given UBE will be the one advertising for fake medicinal product. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in such UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Keywords: Body Enhancement, Lexis, Medicinal, Unsolicited Bulk e-mail (UBE), Vector Space Document Model, Viagra

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3508
236 Popularization of the Communist Manifesto in 19th Century Europe

Authors: Xuanyu Bai

Abstract:

“The Communist Manifesto”, written by Karl Marx and Friedrich Engels, is one of the most significant documents throughout the whole history which covers across different fields including Economic, Politic, Sociology and Philosophy. Instead of discussing the Communist ideas presented in the Communist Manifesto, the essay focuses on exploring the reasons that contributed to the popularization of the document and its influence on political revolutions in 19th century Europe by concentrating on the document itself along with other primary and secondary sources and temporal artwork. Combining the details from the Communist Manifesto and other documents, Marx’s writing style and word choice, his convincible notions about a new society dominated by proletariats, and the revolutionary idea of class destruction has led to the popularization of the Communist Manifesto and influenced the latter political revolutions.

Keywords: Communist Manifesto, The Wealth of Nations, 19th century Europe, word choice, capitalism, communism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 554
235 Support Vector Machine for Persian Font Recognition

Authors: A. Borji, M. Hamidi

Abstract:

In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefaces

Keywords: Persian font recognition, support vector machine, gabor filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
234 Content-based Retrieval of Medical Images

Authors: Lilac A. E. Al-Safadi

Abstract:

With the advance of multimedia and diagnostic images technologies, the number of radiographic images is increasing constantly. The medical field demands sophisticated systems for search and retrieval of the produced multimedia document. This paper presents an ongoing research that focuses on the semantic content of radiographic image documents to facilitate semantic-based radiographic image indexing and a retrieval system. The proposed model would divide a radiographic image document, based on its semantic content, and would be converted into a logical structure or a semantic structure. The logical structure represents the overall organization of information. The semantic structure, which is bound to logical structure, is composed of semantic objects with interrelationships in the various spaces in the radiographic image.

Keywords: Semantic Indexing, Content-Based Retrieval, Radiographic Images, Data Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
233 Extending the Conceptual Neighborhood Graph of the Relations for the Semantic Adaptation of Multimedia Documents

Authors: Azze-Eddine Maredj, Nourredine Tonkin

Abstract:

The recent developments in computing and communication technology permit to users to access multimedia documents with variety of devices (PCs, PDAs, mobile phones...) having heterogeneous capabilities. This diversification of supports has trained the need to adapt multimedia documents according to their execution contexts. A semantic framework for multimedia document adaptation based on the conceptual neighborhood graphs was proposed. In this framework, adapting consists on finding another specification that satisfies the target constraints and which is as close as possible from the initial document. In this paper, we propose a new way of building the conceptual neighborhood graphs to best preserve the proximity between the adapted and the original documents and to deal with more elaborated relations models by integrating the relations relaxation graphs that permit to handle the delays and the distances defined within the relations.

Keywords: Conceptual Neighborhood Graph, Relaxation Graphs, Relations with Delays, Semantic Adaptation of Multimedia Documents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546
232 Control Configuration System as a Key Element in Distributed Control System

Authors: Goodarz Sabetian, Sajjad Moshfe

Abstract:

Control system for hi-tech industries could be realized generally and deeply by a special document. Vast heavy industries such as power plants with a large number of I/O signals are controlled by a distributed control system (DCS). This system comprises of so many parts from field level to high control level, and junior instrument engineers may be confused by this enormous information. The key document which can solve this problem is “control configuration system diagram” for each type of DCS. This is a road map that covers all of activities respect to control system in each industrial plant and inevitable to be studied by whom corresponded. It plays an important role from designing control system start point until the end; deliver the system to operate. This should be inserted in bid documents, contracts, purchasing specification and used in different periods of project EPC (engineering, procurement, and construction). Separate parts of DCS are categorized here in order of importance and a brief description and some practical plan is offered. This article could be useful for all instrument and control engineers who worked is EPC projects.

Keywords: Control, configuration, DCS, power plant, bus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1215
231 Algorithm for Information Retrieval Optimization

Authors: Kehinde K. Agbele, Kehinde Daniel Aruleba, Eniafe F. Ayetiran

Abstract:

When using Information Retrieval Systems (IRS), users often present search queries made of ad-hoc keywords. It is then up to the IRS to obtain a precise representation of the user’s information need and the context of the information. This paper investigates optimization of IRS to individual information needs in order of relevance. The study addressed development of algorithms that optimize the ranking of documents retrieved from IRS. This study discusses and describes a Document Ranking Optimization (DROPT) algorithm for information retrieval (IR) in an Internet-based or designated databases environment. Conversely, as the volume of information available online and in designated databases is growing continuously, ranking algorithms can play a major role in the context of search results. In this paper, a DROPT technique for documents retrieved from a corpus is developed with respect to document index keywords and the query vectors. This is based on calculating the weight (

Keywords: Internet ranking,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
230 Clustering Unstructured Text Documents Using Fading Function

Authors: Pallav Roxy, Durga Toshniwal

Abstract:

Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.

Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
229 Text Summarization for Oil and Gas News Article

Authors: L. H. Chong, Y. Y. Chen

Abstract:

Information is increasing in volumes; companies are overloaded with information that they may lose track in getting the intended information. It is a time consuming task to scan through each of the lengthy document. A shorter version of the document which contains only the gist information is more favourable for most information seekers. Therefore, in this paper, we implement a text summarization system to produce a summary that contains gist information of oil and gas news articles. The summarization is intended to provide important information for oil and gas companies to monitor their competitor-s behaviour in enhancing them in formulating business strategies. The system integrated statistical approach with three underlying concepts: keyword occurrences, title of the news article and location of the sentence. The generated summaries were compared with human generated summaries from an oil and gas company. Precision and recall ratio are used to evaluate the accuracy of the generated summary. Based on the experimental results, the system is able to produce an effective summary with the average recall value of 83% at the compression rate of 25%.

Keywords: Information retrieval, text summarization, statistical approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
228 Suitability of Requirements Abstraction Model (RAM) Requirements for High-Level System Testing

Authors: Naeem Muhammad, Yves Vandewoude, Yolande Berbers, Robert Feldt

Abstract:

The Requirements Abstraction Model (RAM) helps in managing abstraction in requirements by organizing them at four levels (product, feature, function and component). The RAM is adaptable and can be tailored to meet the needs of the various organizations. Because software requirements are an important source of information for developing high-level tests, organizations willing to adopt the RAM model need to know the suitability of the RAM requirements for developing high-level tests. To investigate this suitability, test cases from twenty randomly selected requirements were developed, analyzed and graded. Requirements were selected from the requirements document of a Course Management System, a web based software system that supports teachers and students in performing course related tasks. This paper describes the results of the requirements document analysis. The results show that requirements at lower levels in the RAM are suitable for developing executable tests whereas it is hard to develop from requirements at higher levels.

Keywords: Market-driven requirements engineering, requirements abstraction model, requirements abstraction, system testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
227 Semantic Indexing Approach of a Corpora Based On Ontology

Authors: Mohammed Erritali

Abstract:

The growth in the volume of text data such as books and articles in libraries for centuries has imposed to establish effective mechanisms to locate them. Early techniques such as abstraction, indexing and the use of classification categories have marked the birth of a new field of research called "Information Retrieval". Information Retrieval (IR) can be defined as the task of defining models and systems whose purpose is to facilitate access to a set of documents in electronic form (corpus) to allow a user to find the relevant ones for him, that is to say, the contents which matches with the information needs of the user. This paper presents a new semantic indexing approach of a documentary corpus. The indexing process starts first by a term weighting phase to determine the importance of these terms in the documents. Then the use of a thesaurus like Wordnet allows moving to the conceptual level. Each candidate concept is evaluated by determining its level of representation of the document, that is to say, the importance of the concept in relation to other concepts of the document. Finally, the semantic index is constructed by attaching to each concept of the ontology, the documents of the corpus in which these concepts are found.

Keywords: Semantic, indexing, corpora, WordNet, ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
226 DocPro: A Framework for Processing Semantic and Layout Information in Business Documents

Authors: Ming-Jen Huang, Chun-Fang Huang, Chiching Wei

Abstract:

With the recent advance of the deep neural network, we observe new applications of NLP (natural language processing) and CV (computer vision) powered by deep neural networks for processing business documents. However, creating a real-world document processing system needs to integrate several NLP and CV tasks, rather than treating them separately. There is a need to have a unified approach for processing documents containing textual and graphical elements with rich formats, diverse layout arrangement, and distinct semantics. In this paper, a framework that fulfills this unified approach is presented. The framework includes a representation model definition for holding the information generated by various tasks and specifications defining the coordination between these tasks. The framework is a blueprint for building a system that can process documents with rich formats, styles, and multiple types of elements. The flexible and lightweight design of the framework can help build a system for diverse business scenarios, such as contract monitoring and reviewing.

Keywords: Document processing, framework, formal definition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
225 Lexical Based Method for Opinion Detection on Tripadvisor Collection

Authors: Faiza Belbachir, Thibault Schienhinski

Abstract:

The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.

Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
224 Powerful Tool to Expand Business Intelligence: Text Mining

Authors: Li Gao, Elizabeth Chang, Song Han

Abstract:

With the extensive inclusion of document, especially text, in the business systems, data mining does not cover the full scope of Business Intelligence. Data mining cannot deliver its impact on extracting useful details from the large collection of unstructured and semi-structured written materials based on natural languages. The most pressing issue is to draw the potential business intelligence from text. In order to gain competitive advantages for the business, it is necessary to develop the new powerful tool, text mining, to expand the scope of business intelligence. In this paper, we will work out the strong points of text mining in extracting business intelligence from huge amount of textual information sources within business systems. We will apply text mining to each stage of Business Intelligence systems to prove that text mining is the powerful tool to expand the scope of BI. After reviewing basic definitions and some related technologies, we will discuss the relationship and the benefits of these to text mining. Some examples and applications of text mining will also be given. The motivation behind is to develop new approach to effective and efficient textual information analysis. Thus we can expand the scope of Business Intelligence using the powerful tool, text mining.

Keywords: Business intelligence, document warehouse, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2660
223 Secure Text Steganography for Microsoft Word Document

Authors: Khan Farhan Rafat, M. Junaid Hussain

Abstract:

Seamless modification of an entity for the purpose of hiding a message of significance inside its substance in a manner that the embedding remains oblivious to an observer is known as steganography. Together with today's pervasive registering frameworks, steganography has developed into a science that offers an assortment of strategies for stealth correspondence over the globe that must, however, need a critical appraisal from security breach standpoint. Microsoft Word is amongst the preferably used word processing software, which comes as a part of the Microsoft Office suite. With a user-friendly graphical interface, the richness of text editing, and formatting topographies, the documents produced through this software are also most suitable for stealth communication. This research aimed not only to epitomize the fundamental concepts of steganography but also to expound on the utilization of Microsoft Word document as a carrier for furtive message exchange. The exertion is to examine contemporary message hiding schemes from security aspect so as to present the explorative discoveries and suggest enhancements which may serve a wellspring of information to encourage such futuristic research endeavors.

Keywords: Hiding information in plain sight, stealth communication, oblivious information exchange, conceal, steganography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
222 Optimal Document Archiving and Fast Information Retrieval

Authors: Hazem M. El-Bakry, Ahmed A. Mohammed

Abstract:

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Information Storage and Retrieval, Electronic Archiving, Fast Information Detection, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
221 A Universal Approach to Categorize Failures in Production

Authors: K. Knüppel, G. Meyer, P. Nyhuis

Abstract:

The increasing interconnectedness and complexity of  production processes raise the susceptibility of production systems to  failure. Therefore, the ability to respond quickly to failures is  increasingly becoming a competitive factor. The research project  "Sustainable failure management in manufacturing SMEs" is  developing a methodology to identify failures in the production and  select preventive and reactive measures in order to correct failures  and to establish sustainable failure management systems.

 

Keywords: Failure categorization, failure management, logistic performance, production optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
220 Meta-Classification using SVM Classifiers for Text Documents

Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp

Abstract:

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated three approaches to build a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a metaclassifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the accuracy of classification and that our meta-classification strategy gives better results than each individual classifier. For 7083 Reuters text documents we obtained a classification accuracies up to 92.04%.

Keywords: Meta-classification, Learning with Kernels, Support Vector Machine, and Performance Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
219 Application of GIS-Based Construction Engineering: An Electronic Document Management System

Authors: Mansour N. Jadid

Abstract:

This paper describes the implementation of a GIS to provide decision support for successfully monitoring the movements and storage of materials, hence ensuring that finished products travel from the point of origin to the destination construction site through the supply-chain management (SCM) system. This system ensures the efficient operation of suppliers, manufacturers, and distributors by determining the shortest path from the point of origin to the final destination to reduce construction costs, minimize time, and enhance productivity. These systems are essential to the construction industry because they reduce costs and save time, thereby improve productivity and effectiveness. This study describes a typical supply-chain model and a geographical information system (GIS)-based SCM that focuses on implementing an electronic document management system, which maps the application framework to integrate geodetic support with the supply-chain system. This process provides guidance for locating the nearest suppliers to fill the information needs of project members in different locations. Moreover, this study illustrates the use of a GIS-based SCM as a collaborative tool in innovative methods for implementing Web mapping services, as well as aspects of their integration by generating an interactive GIS for the construction industry platform.

Keywords: Construction, coordinate, engineering, GIS, management, map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450