
IFDewey: A New Insert-Friendly Labeling Schema

for XML Data

Abstract—XML has become a popular standard for information

exchange via web. Each XML document can be presented as a

rooted, ordered, labeled tree. The Node label shows the exact

position of a node in the original document. Region and Dewey

encoding are two famous methods of labeling trees. In this paper, we

propose a new insert friendly labeling method named IFDewey based

on recently proposed scheme, called Extended Dewey. In Extended

Dewey many labels must be modified when a new node is inserted

into the XML tree. Our method eliminates this problem by reserving

even numbers for future insertion. Numbers generated by Extended

Dewey may be even or odd. IFDewey modifies Extended Dewey so

that only odd numbers are generated and even numbers can then be

used for a much easier insertion of nodes.

Keywords—XML, Tree Labeling, Query Processing.

I. INTRODUCTION

REE Labeling plays a key role in XML query processing.

Every query processing algorithm depends deeply on the

way in which XML tree is labeled. Various tree labeling schemas

have been proposed [1, 2, 3, 7, 8] and some of them are widely used

by XML query processors. Two major labeling methods are

Region [4] and Dewey [3] encoding. Many query processing

algorithms [4, 5, 6, 9] have employed Region encoding for labeling

tree nodes. In [1], Extended Dewey was proposed and applied

for XML query processing algorithm called TJFast. The

advantage of this method is that, the path to reach any node

from the root can be derived from its label using a Finite State

Transducer (FST). The main problem of this method is the

lack of flexibility for inserting new nodes. In the Ordpaths

method [2], another extension for original Dewey encoding

method, the authors apply the idea of using even numbers for

insertion of the new nodes. In this paper we propose a new

insert-friendly labeling method named IFDewey. We took

advantages of both methods (Ordpaths and Extended Dewey)

and introduced a new labeling schema named IFDewey.

We modified Extended Dewey so that like the method used

in Ordpaths, only odd numbers are generated. With the help of

even numbers new nodes can be easily added to XML tree.

TJFast algorithm needs no extra changes for working with our

new labeling method. Section 2 briefly reviews Original

Dewey and demonstrates how Extended Dewey labels XML

tree nodes and also describes the way that these labels are

S. Soltan, A. Zarnani and R. AliMohammadzadeh are with Database

Research Group, Faculty of ECE, School of Engineering, University of

Tehran, Iran (e-mail: s.soltan,r.mohammadzadeh,a.zarnani@ece.ut.ac.ir).

M. Rahgozar is with Control and Intelligent Processing Center of

Excellence, Faculty of ECE, School of Engineering, University of Tehran,Iran

(e-mail: rahgozar@ut.ac.ir).

converted into XML tag names with the help of FST. In

section 3, we explain IFDewey and show how our method has

modified Extended Dewey to make it Insert-Friendly. We

conclude the paper and discuss the future works in Section 4.

II. PRELIMINIARIES

 A. Original Dewey and Ordpaths Encoding

Dewey encoding is proposed in [3] for labeling XML trees.

In this method, each node label is a combination of its parent

label and an integer number. If u is the x-th child of s in XML

tree then label of u, label(u), is concatenation of label of s and

x which is presented as label(s).x. For example if element

label for u is 2.5.3 then its 5th child label will be 2.5.3.5. The

advantage of this method is that for any element label, we can

easily extract node labels of its ancestors. For instance if an

element label is 5.2.3.1 then its parent label is 5.2.3, its first

ancestor label is 5.2 and so on.

Ordpaths [2] modified original Dewey encoding method so

that it became insert-friendly. In this method the even numbers

are reserved for adding the new nodes. When an XML tree is

labeled for the first time, only odd numbers are generated.

Considering two sibling elements with the labels 1.3.5.3 and

1.3.5.5, when a new node is added between these two nodes,

using reserved even number "4", its label will be 1.3.5.4.1.

Original Dewey was further improved in [1] for increasing the

query processing performance.

 B. Extended Dewey Encoding and FST

In this section we demonstrate the Extended Dewey Encoding

proposed in [1]. Figure 1 shows a simple tree which is built

from an XML document. The code above each node represents

Extended Dewey label. Extended Dewey needs some schema

information for labeling. Schema information can be extracted

from DTD or the original document. In an XML document all

distinct child names of any tag make a set, named child clue.

CT(t) ={t0,t1,…,tn-1} denotes the child name clue of tag t.

Considering the following DTD:

<! ELEMENT bib (book*)>

<! ELEMENT book (author+, title, chapter*)>,

{author, title, chapter} presents the child clue of book tag.

With the help of the child clue, an element name can be

derived from the node label. Like original Dewey, Extended

Dewey code for each element is a combination of its parent

label and a postfix integer number (xi). For any element ei with

S. Soltan, A. Zarnani, R. AliMohammadzadeh, and M. Rahgozar

T

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

203International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

98
9.

pd
f

the name ti Extended Dewey assigns an integer number, xi, to ei

such that xi mod ni =i.. For instance "title" Extended Dewey

label is 0.4 because 4 mod 3 is 1 (1 is "title" index in book

clue).

Fig. 1 XML tree with Extended Dewey labels

Suppose element name of u is k-th tag in CT(ts)

(k=0, 1, …, n-1) then Extended Dewey postfix code (x) for u

(child of s) generates as follows:

1. if u is the first child of s ,then x=k

2. otherwise if we assume that y is the last component of

the label of the left sibling u, then

 x=

+⋅

<+⋅

.

)mod(

otherwisekn
n

y

knyifkn
n

y

For instance, label for "title"(0.4) tag is calculated as

follows:

y=3, n=3 and k=1 so x= 13
3

3
+⋅

 = 4, then the label of

parent which is "0" will be attached to this number and final

label 0.4 is generated.

The Next example shows how Extended Dewey labels are

converted into Root-to-Node tags. Fig. 2 shows FST which is

created from our sample DTD.

Fig. 2 Extended Dewey FST for sample DTD

Root-to-Node tags for "chapter"(0.5) are found as follows:

"bib" tag is common for all nodes so we go to "bib" state .In

"bib" state We calculate 0 mod 1. It's 0 so we go to "book"

state .In "book" state we calculate 5 mod 3. It's 2 and we go to

"chapter" state. Finally Root-to-Node tags "bib, book, chapter"

are generated.

III. IFDEWEY

Adding a new node into XML tree labeled by Extended

Dewey leads to modification of several nodes. Supposing

XML tree in Figure 1, if we want to add another "author" tag

between "author"(0.3) and "title"(0.4), then labels for

"title"(0.4) and "chapter"(0.5) should be recalculated. We will

show that this problem can be eliminated by modifying some

parts of Extended Dewey formula .Numbers generated by

Extended Dewey formula are a mix of odd and even numbers.

For instance numbers 0, 3, 4 and 5 are assigned to children of

"book"(0). We changed the formula so that only odd numbers

are generated and even numbers will be reserved for future

insertion. The code length can increasingly become so large.

This problem is also seen in the methods proposed in [1, 2].

Fig. 3 shows the XML tree with IFDewey labels.

Fig. 3 XML tree with IFDewey labels

Suppose element name of u is k-th tag in CT(ts)

(k=0, 1,…, n-1) then IFDewey postfix code (x) for u (child of

s) generates as follows :

1. if u is the first child of s, then x=2k+1

2. otherwise if we assume that y is the last component of

the label of the left sibling u, then

 x=

++⋅

+<++⋅

.122
2

12)2mod(122
2

otherwisekn
n

y

knyifkn
n

y

For example label for "title"(1.9) tag is calculated as

follows:

y=7, n=3 and k=1 so x= 126
6

7
++⋅

 = 9, then node label of

parent("1") will be attached to this number and finally label

1.9 is generated. Fig. 4 shows the FST which is built based on

our method. To add a new tag, for example "author”, between

"author"(1.7) and "title"(1.9) we easily create an intermediate

node with the even number between 7 and 9 (we may have

more than one even number to choose in some situations) then

we add the new node as a child of the intermediate node. This

insertion couldn't be done on Extended Dewey because there is

no integer number between 3 and 4. Fig. 5 illustrates changes

after adding a new "author" node.

Fig. 4 IFDewey FST for Sample DTD

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

204International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

98
9.

pd
f

As it can be seen in Fig. 4, a new loop transition is added

into "book" state which means if we reach an even number no

new state transition is needed. Root-to-Node tags for

"author"(1.8.1) are found as follows:

"bib" tag is common for all nodes, so we go to "bib" state .In

"bib" state We calculate 1 mod 2 (2 instead of 1, because we

use 2n instead of n). The result is 1 so we go to "book" state

.in "book" state we omit even number 8 (even numbers are

only used for intermediate nodes and will not be used in

calculation) then we calculate 1 mod 6. It's 1 so we go to

"author" state. Finally, Root-to-Node tags "bib, book, author"

are generated.

Fig. 5 XML tree after inserting new "author" node

IV. CONCLUSION

We proposed a new labeling method to resolve the insertion

problem in Extended Dewey encoding. In our approach new

nodes can be easily added to the XML tree and there is no

need for modification of other node labels. A new finite

transducer is also designed to translate insert friendly labels

into Root-to-Node tags. TJfast algorithm can also use this new

labeling method without any modification. IFDewey has the

same code length problem as the Ordpaths and Extended

Dewey methods. We plan to tackle this problem and

investigate the efficiency of our method in our future work.

REFERENCES
[1] J. Lu, T. Wang Ling, C. Chan, T. Chen : From Region Encoding To

Extended Dewey: On Efficient Processing of XML Twig Pattern

Matching. VLDB (2005) 193-204.

[2] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G. Schaller, , N. Westbury:

ORDPATHs: Insert-Friendly XML Node Labels. SIGMOD (2004) 903-

908.

[3] S. Tatarinov, K.S. Viglas., J. Beyer, E. Shanmugasun-daram, J. Shekita,

C. Zhang, : Storing and querying ordered XML using a relational

database system. SIGMOD (2002) 204-215.

[4] N. Bruno, D. Srivastava, N. Koudas : Holistic twig joins: optimal XML

pattern matching. SIGMOD (2002) 310-321.

[5] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel: Structural Joins: A

Primitive for Efficient XML Query Pattern Matching. ICDE (2002) 141-

152

[6] H. Jiang, W. Wang, H. Lu, J.X. Yu: Holistic Twig Joins on Indexed

XML Documents. VLDB (2003) 273-284.

[7] Q. Li, B. Moon: Indexing and querying XML data for regular path

expressions. VLDB (2001) 361-370.

[8] X. Wu, M. Lee, W. Hsu: A prime number labeling scheme for dynamic

ordered XML trees. ICDE (2004) 66-78.

[9] M. Emadi, M. Rahgozar, A. Ardalan, A. Kazerani, M.M .Arian: A

Comparative Study of DTD-Independent XML Data Storage

Approaches. 11th International CSI Computer Conference, Tehran, Iran,

CSICC (2006) 624-628.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:1, 2008

205International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

98
9.

pd
f

