Search results for: wireless local area network
5615 IEEE 802.11 b and g WLAN Propagation Model using Power Density Measurements at ESPOL
Authors: E. E. Mantilla, C. R. Reyes, B. G. Ramos
Abstract:
This paper describes the development of a WLAN propagation model, using Spectral Analyzer measurements. The signal is generated by two Access Points (APs) on the base floor at the administrative Communication School of ESPOL building. In general, users do not have a Q&S reference about a wireless network; however, this depends on the level signal as a function of frequency, distance and other path conditions between receiver and transmitter. Then, power density of the signal decrease as it propagates through space and data transfer rate is affected. This document evaluates and implements empirical mathematical formulation for the characterization of WLAN radio wave propagation on two aisles of the building base floor.Keywords: frequency, Spectral Analyzer, transmitter, WLAN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20115614 A Model for Business Network Governance: Case Study in the Pharmaceutical Industry
Authors: Emil Crişan, Matthias Klumpp
Abstract:
This paper discusses the theory behind the existence of an idealistic model for business network governance and uses a clarifying case-study, containing governance structures and processes within a business network framework. The case study from a German pharmaceutical industry company complements existing literature by providing a comprehensive explanation of the relations between supply chains and business networks, and also between supply chain management and business network governance. Supply chains and supply chain management are only one side of the interorganizational relationships and ensure short-term performance, while real-world governance structures are needed for ensuring the long-term existence of a supply chain. Within this context, a comprehensive model for business governance is presented. An interesting finding from the case study is that multiple business network governance systems co-exist within the evaluated supply chain.
Keywords: Business network, pharmaceutical industry, supply chain governance, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23635613 Sociological Impact on Education An Analytical Approach Through Artificial Neural network
Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne
Abstract:
This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.Keywords: Education, Fuzzy, neural network, prediction, Sociology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16395612 Hopfield Network as Associative Memory with Multiple Reference Points
Authors: Domingo López-Rodríguez, Enrique Mérida-Casermeiro, Juan M. Ortiz-de-Lazcano-Lobato
Abstract:
Hopfield model of associative memory is studied in this work. In particular, two main problems that it possesses: the apparition of spurious patterns in the learning phase, implying the well-known effect of storing the opposite pattern, and the problem of its reduced capacity, meaning that it is not possible to store a great amount of patterns without increasing the error probability in the retrieving phase. In this paper, a method to avoid spurious patterns is presented and studied, and an explanation of the previously mentioned effect is given. Another technique to increase the capacity of a network is proposed here, based on the idea of using several reference points when storing patterns. It is studied in depth, and an explicit formula for the capacity of the network with this technique is provided.
Keywords: Associative memory, Hopfield network, network capacity, spurious patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11085611 Neural Network Based Predictive DTC Algorithm for Induction Motors
Authors: N.Vahdatifar, Ss.Mortazavi, R.Kianinezhad
Abstract:
In this paper, a Neural Network based predictive DTC algorithm is proposed .This approach is used as an alternative to classical approaches .An appropriate riate Feed - forward network is chosen and based on its value of derivative electromagnetic torque ; optimal stator voltage vector is determined to be applied to the induction motor (by inverter). Moreover, an appropriate torque and flux observer is proposed.Keywords: Neural Networks, Predictive DTC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13925610 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.
Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6375609 Performance Evaluation of Task Scheduling Algorithm on LCQ Network
Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad
Abstract:
The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20215608 Analyzing the Fiscal Health of Local Governments in Taiwan: Evidence from Quantile Analysis
Authors: Chiung-Ju Huang, Yuan-Hong Ho
Abstract:
This paper develops the fiscal health index of 21 local governments in Taiwan over the 1984 to 2010 period. A quantile regression analysis was used to explore the extent that economic variables, political budget cycles, and legislative checks and balances, impact different quantiles of fiscal health index for a country over a sample period of time. Our findings suggest that local governments at the lower quantile are significantly benefited from political budget cycles and the increase in central government revenues, while legislative effective checks and balances and the increase in central government expenditures have a significantly negative effect on local fiscal health. When local governments are in the upper tail of the distribution, legislative checks and balances and growth in macroeconomics have significant and adverse effects on the fiscal health of local governments. However, increases in central government revenues have significant and positive effects on the health status of local government in Taiwan.
Keywords: Fiscal health, political budget cycles, legislative checks and balances, quantile regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20615607 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7995606 Pre-Malignant Breast Lesions, Methods of Treatment and Outcome
Authors: Ahmed Mostafa, Mohamed Mahmoud, Nesreen H. Hafez, Mohamed Fahim
Abstract:
This retrospective study includes 60 patients with pre-invasive breast cancer. Aim of the study: Evaluation of premalignant lesions of the breast (DCIS), different treatment methods and outcome. Patients and methods: 60 patients with DCIS were studied from the period between 2005 to 2012, for 38 patients the primary surgical method was wide local resection (WLE) (63.3%) and the other cases (22 patients, 36.7%) had mastectomy, fourteen cases from those who underwent local excision received radiotherapy, while no adjuvant radiotherapy was given for those who underwent mastectomy. In case of hormonal receptor positive DCIS lesions hormonal treatment (Tamoxifen) was given after local control. Results: No difference in overall survival between mastectomy & breast conserving therapy (wide local excision and adjuvant radiotherapy), however local recurrence rate is higher in case of breast conserving therapy, also no role of Axillary evacuation in case of DCIS. The use of hormonal therapy decreases the incidence of local recurrence by about 98%. Conclusion: The main management of DCIS is local treatment (wide local excision and radiotherapy) with hormonal treatment in case of hormone receptor positive lesions.
Keywords: Ductal carcinoma in situ, surgical treatment, radiotherapy, breast conserving therapy, hormonal treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14375605 A Review of Ultralightweight Mutual Authentication Protocols
Authors: Umar Mujahid, Greatzel Unabia, Hongsik Choi, Binh Tran
Abstract:
Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.Keywords: RFID, UMAP, SASI, IoTs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10085604 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking
Authors: Haowei Chen, Kaiqi Xiong
Abstract:
We have developed a better model for understanding the dynamics of malware spread in WMNs in this paper. The suggested model provides an insight into how viral propagation with energy exhaustion and various dispersed node densities might function. Based on a theoretical examination of the suggested model, we conclude that the threshold parameter could be used to identify the dynamics of viral spread globally. When the threshold is less than 1, the virus may be contained, but if it is greater than 1, a pandemic may result. Lastly, we discuss the various viral propagation strategies in relation to the distributed node densities and communication radii in WMNs. The aforementioned numerical simulation findings could serve as a guarantee of the theoretical analyses’ correctness.
Keywords: Bluetooth Security, Malware Propagation, Wireless Mesh Networks, Stability Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4025603 Alternative Approach in Ground Vehicle Wake Analysis
Authors: L. Sterken, S. Sebben, L. Löfdahl
Abstract:
In this paper an alternative visualisation approach of the wake behind different vehicle body shapes with simplified and fully-detailed underbody has been proposed and analysed. This allows for a more clear distinction among the different wake regions. This visualisation is based on a transformation of the cartesian coordinates of a chosen wake plane to polar coordinates, using as filter velocities lower than the freestream. This transformation produces a polar wake plot that enables the division and quantification of the wake in a number of sections. In this paper, local drag has been used to visualise the drag contribution of the flow by the different sections. Visually, a balanced wake can be observed by the concentric behaviour of the polar plots. Alternatively, integration of the local drag of each degree section as a ratio of the total local drag yields a quantifiable approach of the wake uniformity, where different sections contribute equally to the local drag, with the exception of the wheels.Keywords: Coordinate transformation, ground vehicle, local drag, wake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23915602 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based On an RBF Network
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.
Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward and feedback control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26765601 Dynamic Interaction Network to Model the Interactive Patterns of International Stock Markets
Authors: Laura Lukmanto, Harya Widiputra, Lukas
Abstract:
Studies in economics domain tried to reveal the correlation between stock markets. Since the globalization era, interdependence between stock markets becomes more obvious. The Dynamic Interaction Network (DIN) algorithm, which was inspired by a Gene Regulatory Network (GRN) extraction method in the bioinformatics field, is applied to reveal important and complex dynamic relationship between stock markets. We use the data of the stock market indices from eight countries around the world in this study. Our results conclude that DIN is able to reveal and model patterns of dynamic interaction from the observed variables (i.e. stock market indices). Furthermore, it is also found that the extracted network models can be utilized to predict movement of the stock market indices with a considerably good accuracy.
Keywords: complex dynamic relationship, dynamic interaction network, interactive stock markets, stock market interdependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13985600 A Practical Approach for Electricity Load Forecasting
Authors: T. Rashid, T. Kechadi
Abstract:
This paper is a continuation of our daily energy peak load forecasting approach using our modified network which is part of the recurrent networks family and is called feed forward and feed back multi context artificial neural network (FFFB-MCANN). The inputs to the network were exogenous variables such as the previous and current change in the weather components, the previous and current status of the day and endogenous variables such as the past change in the loads. Endogenous variable such as the current change in the loads were used on the network output. Experiment shows that using endogenous and exogenous variables as inputs to the FFFBMCANN rather than either exogenous or endogenous variables as inputs to the same network produces better results. Experiments show that using the change in variables such as weather components and the change in the past load as inputs to the FFFB-MCANN rather than the absolute values for the weather components and past load as inputs to the same network has a dramatic impact and produce better accuracy.
Keywords: Daily peak load forecasting, feed forward and feedback multi-context neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18545599 Promoting Local Products through One Village One Product and Customer Satisfaction
Abstract:
In global competition nowadays, the world economy heavily depends upon high technology and capital intensive industries that are mainly owned by well-established economic and developed countries, such as United States of America, United Kingdom, Japan, and South Korea. Indonesia as a developing country is building its economic activities towards industrial country as well, although a slightly different approach was implemented. For example, similar to the concept of one village one product (OVOP) implemented in Japan, Indonesia also adopted this concept by promoting local traditional products to improve incomes of village people and to enhance local economic activities. Analysis on how OVOP program increase local people’s income and influence customer satisfaction were the objective of this paper. Behavioral intention to purchase and re-purchase, customer satisfaction and promotion are key factors for local products to play significant roles in improving local income and economy of the region. The concepts of OVOP and key factors that influence economic activities of local people and the region will be described and explained in the paper. Results of research, in a case study based on 300 respondents, customers of a local restaurant at Tangerang City, Banten Province of Indonesia, indicated that local product, service quality and behavioral intention individually have significant influence to customer satisfaction; whereas simultaneous tests to the variables indicated positive and significant influence to the behavioral intention through customer satisfaction as the intervening variable.
Keywords: Behavioral intention, customer satisfaction, local products, one village one product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23205598 Real-Time Identification of Media in a Laboratory-Scaled Penetrating Process
Authors: Sheng-Hong Pong, Herng-Yu Huang, Yi-Ju Lee, Shih-Hsuan Chiu
Abstract:
In this paper, a neural network technique is applied to real-time classifying media while a projectile is penetrating through them. A laboratory-scaled penetrating setup was built for the experiment. Features used as the network inputs were extracted from the acceleration of penetrator. 6000 set of features from a single penetration with known media and status were used to train the neural network. The trained system was tested on 30 different penetration experiments. The system produced an accuracy of 100% on the training data set. And, their precision could be 99% for the test data from 30 tests.Keywords: back-propagation, identification, neural network, penetration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12775597 Parallel Hybrid Honeypot and IDS Architecture to Detect Network Attacks
Authors: Hafiz Gulfam Ahmad, Chuangdong Li, Zeeshan Ahmad
Abstract:
In this paper, we have proposed a parallel IDS and honeypot based approach to detect and analyze the unknown and known attack taxonomy for improving the IDS performance and protecting the network from intruders. The main theme of our approach is to record and analyze the intruder activities by using both the low and high interaction honeypots. Our architecture aims to achieve the required goals by combing signature based IDS, honeypots and generate the new signatures. The paper describes the basic component, design and implementation of this approach and also demonstrates the effectiveness of this approach to reduce the probability of network attacks.
Keywords: Network security, Intrusion detection, Honeypot, Snort, Nmap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25295596 How Learning Efficiency Affects Job Performance Effectiveness
Authors: Prateep Wajeetongratana
Abstract:
The purpose of this research was to study the influence of learning efficiency on local accountants’ job performance effectiveness. This paper drew upon the survey data collected from 335 local accountants survey conducted at Nakhon Ratchasima province, Thailand. The statistics utilized in this paper included percentage, mean, standard deviation, and regression analysis. The findings revealed that the majority of samples were between 31-40 years old, married, held an undergraduate degree, and had an average income between 10,000-15,000 baht. The majority of respondents had less than five years of accounting experience and worked for local administrations. The overall learning efficiency score was in the highest level while the local accountants’ job performance effectiveness score was also in the high level. The hypothesis testing’s result disclosed that learning efficiency factors which were knowledge, Skill, and Attitude had an influence on local accountants’ job the performance effectiveness.
Keywords: Accountants, Leaning Efficiency, Performance Effectiveness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18295595 Effects of Network Dynamics on Routing Efficiency in P2P Networks
Authors: Mojca Ciglaric, Andrej Krevl, Matjaž Pancur, Tone Vidmar
Abstract:
P2P Networks are highly dynamic structures since their nodes – peer users keep joining and leaving continuously. In the paper, we study the effects of network change rates on query routing efficiency. First we describe some background and an abstract system model. The chosen routing technique makes use of cached metadata from previous answer messages and also employs a mechanism for broken path detection and metadata maintenance. Several metrics are used to show that the protocol behaves quite well even with high rate of node departures, but above a certain threshold it literally breaks down and exhibits considerable efficiency degradation.Keywords: Network dynamics, overlay network, P2P system, routing efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13595594 The Security Trade-Offs in Resource Constrained Nodes for IoT Application
Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve
Abstract:
The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14915593 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm
Authors: D. Singh, R. Yousefi, M. Boroushaki
Abstract:
Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.
Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22025592 Detection of Actuator Faults for an Attitude Control System using Neural Network
Authors: S. Montenegro, W. Hu
Abstract:
The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19925591 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17305590 A New Approach for Fingerprint Classification based on Minutiae Distribution
Authors: Jayant V Kulkarni, Jayadevan R, Suresh N Mali, Hemant K Abhyankar, Raghunath S Holambe
Abstract:
The paper describes a new approach for fingerprint classification, based on the distribution of local features (minute details or minutiae) of the fingerprints. The main advantage is that fingerprint classification provides an indexing scheme to facilitate efficient matching in a large fingerprint database. A set of rules based on heuristic approach has been proposed. The area around the core point is treated as the area of interest for extracting the minutiae features as there are substantial variations around the core point as compared to the areas away from the core point. The core point in a fingerprint has been located at a point where there is maximum curvature. The experimental results report an overall average accuracy of 86.57 % in fingerprint classification.Keywords: Minutiae distribution, Minutiae, Classification, Orientation, Heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15675589 Image Processing Using Color and Object Information for Wireless Capsule Endoscopy
Authors: Jin-Hee Park, Yong-Gyu Lee, Gilwon Yoon
Abstract:
Wireless capsule endoscopy provides real-time images in the digestive tract. Capsule images are usually low resolution and are diverse images due to travel through various regions of human body. Color information has been a primary reference in predicting abnormalities such as bleeding. Often color is not sufficient for this purpose. In this study, we took morphological shapes into account as additional, but important criterion. First, we processed gastric images in order to indentify various objects in the image. Then, we analyzed color information in the object. In this way, we could remove unnecessary information and increase the accuracy. Compared to our previous investigations, we could handle images of various degrees of brightness and improve our diagnostic algorithm.
Keywords: Capsule Endoscopy, HSV model, Image processing, Object Identification, Color Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20555588 Social Movements and the Diffusion of Tactics and Repertoires: Activists' Network in Anti-globalism Movement
Authors: Kyoko Tominaga
Abstract:
Non-Government Organizations (NGOs), Non-Profit Organizations (NPOs), Social Enterprises and other actors play an important role in political decisions in governments at the international levels. Especially, such organizations’ and activists’ network in civil society is quite important to effect to the global politics. To solve the complex social problems in global era, diverse actors should corporate each other. Moreover, network of protesters is also contributes to diffuse tactics, information and other resources of social movements.Based on the findings from the study of International Trade Fairs (ITFs), the author analyzes the network of activists in anti-globalism movement. This research focuses the transition of 54 activists’ whole network in the “protest event” against 2008 G8 summit in Japan. Their network is examined at the three periods: Before protest event phase, during protest event phase and after event phase. A mixed method is used in this study: the author shows the hypothesis from social network analysis and evaluates that with interview data analysis. This analysis gives the two results. Firstly, the more protesters participate to the various events during the protest event, the more they build the network. After that, active protesters keep their network as well. From interview data, we can understand that the active protesters can build their network and diffuse the information because they communicate with other participants and understand that diverse issues are related. This paper comes to same conclusion with previous researches: protest events activate the network among the political activists. However, some participants succeed to build their network, others do not. “Networked” activists are participated in the various events for short period of time and encourage the diffusion of information and tactics of social movements.
Keywords: Social Movement, Global Justice Movement, Tactics, Diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22015587 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment
Authors: John T. Tsiligaridis
Abstract:
The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14535586 Network Coding-based ARQ scheme with Overlapping Selection for Resource Limited Multicast/Broadcast Services
Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon
Abstract:
Network coding has recently attracted attention as an efficient technique in multicast/broadcast services. The problem of finding the optimal network coding mechanism maximizing the bandwidth efficiency is hard to solve and hard to approximate. Lots of network coding-based schemes have been suggested in the literature to improve the bandwidth efficiency, especially network coding-based automatic repeat request (NCARQ) schemes. However, existing schemes have several limitations which cause the performance degradation in resource limited systems. To improve the performance in resource limited systems, we propose NCARQ with overlapping selection (OS-NCARQ) scheme. The advantages of OS-NCARQ scheme over the traditional ARQ scheme and existing NCARQ schemes are shown through the analysis and simulations.
Keywords: ARQ, Network coding, Multicast/Broadcast services, Packet-based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510