Search results for: fault diagnosis and tolerance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 853

Search results for: fault diagnosis and tolerance

73 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
72 Underivatized Amino Acid Analyses Using Liquid Chromatography-Tandem Mass Spectrometry in Scalp Hair of Children with Autism Spectrum Disorder

Authors: Ayat Bani Rashaid, Zain Khasawneh, Mazin Alqhazo, Shreen Nusair, Mohammad El-Khateeb, Mahmoud Bashtawi

Abstract:

Autism Spectrum disorder (ASD) is a psychiatric disorder with unknown etiology that mainly affects children in the first three years of life. Alterations of amino acid levels are believed to contribute to ASD. The levels of six essential amino acids (methionine, histidine, valine, leucine, threonine, and phenylalanine), five conditional amino acids (proline, tyrosine, glutamine, cysteine, and cystine), and five non-essential amino acids (asparagine, aspartic acid, alanine, serine, and glutamic acid) in hair samples of children with ASD (n = 25) were analyzed and compared to corresponding levels in healthy age-matched controls (n = 25). The results showed that the levels of methionine, alanine, and asparagine were significantly lower in the hair samples of ASD group compared to those of the control group (p ≤ 0.05). However, the levels of glutamic acid were significantly higher in the ASD group than the control group (p ≤ 0.05). The current findings could contribute towards further understanding of ASD etiology and provide specialists with a hair amino acid profile utilized as a biomarker for early diagnosis of ASD. Such biomarkers could participate in future developments of therapies that reduce ASD-related symptoms.

Keywords: Autism spectrum disorder, amino acids, liquid chromatography-tandem mass spectrometry, human hair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 666
71 Saliva Cortisol and Yawning as a Predictor of Neurological Disease

Authors: Simon B. N. Thompson

Abstract:

Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.

Keywords: Cortisol, Diagnosis, Neurological Disease, Thompson Cortisol Hypothesis, Yawning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
70 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.

As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
69 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia

Authors: Nevine M. Labib, Michael N. Malek

Abstract:

Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.

Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
68 Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
67 Necrotising Anterior Scleritis and Scleroderma: A Rare Association

Authors: A. Vassila, D. Kalogeropoulos, R. Rawashdeh, N. Hall, N. Rahman, M. Fabian, S. Thulasidharan, H. Parwez

Abstract:

Necrotising scleritis is a severe form of scleritis and poses a significant threat to vision. It can manifest in various systemic autoimmune disorders, systemic vasculitis, or as a consequence of microbial infections. The objective of this study is to present a case of necrotizing scleritis associated with scleroderma, which was further complicated by a secondary Staphylococcus epidermidis infection. This is a retrospective analysis, which examines the medical records of a patient who was hospitalised in the Eye Unit at University Hospital Southampton. A 78-year-old woman presented at the eye casualty department of our unit with a two-week history of progressively worsening pain in her left eye. She received a diagnosis of necrotising scleritis and was admitted to the hospital for further treatment. It was decided to commence a three-day course of intravenous methylprednisolone followed by a tapering regimen of oral steroids. Additionally, a conjunctival swab was taken, and two days later, it revealed the presence of S. epidermidis, indicating a potential secondary infection. Given this finding, she was also prescribed topical (Ofloxacin 0.3% - four times daily) and oral (Ciprofloxacin 750 mg – twice daily) antibiotics. The inflammation and symptoms gradually improved, leading to the patient being scheduled for a scleral graft and applying an amniotic membrane to cover the area of scleral thinning. Rheumatoid arthritis and granulomatosis with polyangiitis are the most commonly identifiable systemic diseases associated with necrotising scleritis. Although association with scleroderma is extremely rare, early identification and treatment are necessary to prevent scleritis-related complications.

Keywords: Scleritis, necrotizing scleritis, scleroderma, autoimmune disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34
66 Assessing Psycho-Social Stressors for Chronically Infected Hepatitis C Virus Patients in Egypt

Authors: Ammal M. Metwally, Dalia M. Elmosalami, Walaa A. Fouad, Abla G. Khalifa, Lobna A. El Etreby, Mohamed AbdelRahman

Abstract:

People with hepatitis C are likely to experience psychological distress related to adjustment issues following diagnosis. Objective: The study was conducted to determine the psycho-social stressors accompanying Hepatitis C virus (HCV) chronic infection. The study focused on immediate and later on reactions to being diagnosed as infected HCV patients. Effect of HCV on disruption of patients’ relationships in term of family relationship and friendship, employment and financial status was assessed. The magnitude and causes of the social stigma and its relation to awareness about illness, level of education were also assessed. Methods: During this study the subjective experiences of people having HCV was explored through a designed questionnaire targeted 540 cases; 359 males and 181 females from ten out of 21 National Treatment Reference Centers of National Hepatology and Tropical Medicine Research Institutes of Ministry of Health (MOH) hospitals. The study was conducted along a period of six months from September 2011 to March 2012. Results: The study revealed that the financial problems are the commonest problems faced by 75.5% of the cases. More than 70% of the cases suffered from immediate sadness versus 67.4% suffered from worry. Social stigma was reported by 13 % of HCV +patients, the majority of which were females. Conclusions: Exploring the psychosocial consequences of HCV infection can act as pressing motivators for behavior change needed for limiting HCV endemicity in Egypt.

Keywords: Egypt, HCV infection, psychosocial adjustment, stigma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071
65 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
64 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
63 Distinction between Manifestations of Diabetic Retinopathy and Dust Artifacts Using Three-Dimensional HSV Color Space

Authors: Naoto Suzuki

Abstract:

Many ophthalmologists find it difficult to distinguish between small retinal hemorrhages and dust artifacts when using fundus photography for the diagnosis of diabetic retinopathy. Six patients with diabetic retinopathy underwent fundus photography, which revealed dust artifacts in the photographs of some patients. We constructed an experimental device similar to the optical system of the fundus camera and colored the fundi of the artificial eyes with khaki, sunset, rose and sunflower colors. Using the experimental device, we photographed dust artifacts using each artificial eyes. We used Scilab 5.4.0 and SIVP 0.5.3 softwares to convert the red, green, and blue (RGB) color space to the hue, saturation, and value (HSV) color space. We calculated the differences between the areas of manifestations and perimanifestations and the areas of dust artifacts and periartifacts using average HSVs. The V values in HSV for the manifestations were as follows: hemorrhages, 0.06 ± 0.03; hard exudates, −0.12 ± 0.06; and photocoagulation marks, 0.07 ± 0.02. For dust artifacts, visualized in the human and artificial eyes, the V values were as follows: human eye, 0.19 ± 0.03; khaki, 0.41 ± 0.02; sunset, 0.43 ± 0.04; rose, 0.47 ± 0.11; and sunflower, 0.59 ± 0.07. For the human and artificial eyes, we calculated two sensitivity values of dust artifacts compared to manifestation areas. V values of the HSV color space enabled the differentiation of small hemorrhages, hard exudates, and photocoagulation marks from dust artifacts.

Keywords: Diabetic retinopathy, HSV color space, small hemorrhages, hard exudates, photocoagulation marks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1208
62 Automatic Classification of Lung Diseases from CT Images

Authors: Abobaker Mohammed Qasem Farhan, Shangming Yang, Mohammed Al-Nehari

Abstract:

Pneumonia is a kind of lung disease that creates congestion in the chest. Such pneumonic conditions lead to loss of life due to the severity of high congestion. Pneumonic lung disease is caused by viral pneumonia, bacterial pneumonia, or COVID-19 induced pneumonia. The early prediction and classification of such lung diseases help reduce the mortality rate. We propose the automatic Computer-Aided Diagnosis (CAD) system in this paper using the deep learning approach. The proposed CAD system takes input from raw computerized tomography (CT) scans of the patient's chest and automatically predicts disease classification. We designed the Hybrid Deep Learning Algorithm (HDLA) to improve accuracy and reduce processing requirements. The raw CT scans are pre-processed first to enhance their quality for further analysis. We then applied a hybrid model that consists of automatic feature extraction and classification. We propose the robust 2D Convolutional Neural Network (CNN) model to extract the automatic features from the pre-processed CT image. This CNN model assures feature learning with extremely effective 1D feature extraction for each input CT image. The outcome of the 2D CNN model is then normalized using the Min-Max technique. The second step of the proposed hybrid model is related to training and classification using different classifiers. The simulation outcomes using the publicly available dataset prove the robustness and efficiency of the proposed model compared to state-of-art algorithms.

Keywords: CT scans, COVID-19, deep learning, image processing, pneumonia, lung disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 610
61 How to Win Passengers and Influence Motorists? Lessons Learned from a Comparative Study of Global Transit Systems

Authors: Oliver F. Shyr, Yu-Hsuan Hsiao, David E. Andersson

Abstract:

Due to the call of global warming effects, city planners aim at actions for reducing carbon emission. One of the approaches is to promote the usage of public transportation system toward the transit-oriented-development. For example, rapid transit system in Taipei city and Kaohsiung city are opening. However, until November 2008 the average daily patronage counted only 113,774 passengers at Kaohsiung MRT systems, much less than which was expected. Now the crucial questions: how the public transport competes with private transport? And more importantly, what factors would enhance the use of public transport? To give the answers to those questions, our study first applied regression to analyze the factors attracting people to use public transport around cities in the world. It is shown in our study that the number of MRT stations, city population, cost of living, transit fare, density, gasoline price, and scooter being a major mode of transport are the major factors. Subsequently, our study identified successful and unsuccessful cities in regard of the public transport usage based on the diagnosis of regression residuals. Finally, by comparing transportation strategies adopted by those successful cities, our conclusion stated that Kaohsiung City could apply strategies such as increasing parking fees, reducing parking spaces in downtown area, and reducing transfer time by providing more bus services and public bikes to promote the usage of public transport.

Keywords: Public Transit System, Comparative Study, Transport Demand Management, Regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
60 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
59 Evaluation of the Effect of Nursing Services Provided in a Correctional Institution on the Physical Health Levels and Health Behaviors of Female Inmates

Authors: Şenay Pehli̇van, Gülümser Kublay

Abstract:

Female inmates placed in a Correctional Institution (CI) have more physical health problems than other women and their male counterparts. Thus, they require more health care services in the CI and nursing services in particular. CI nurses also have the opportunity to teach behaviors which will protect and improve their health to these women who are difficult to reach in the community. The aim of this study was to evaluate effect of nursing services provided in a CI on the physical health levels and health behaviors of female inmates. The study has a quasi-experimental design. The study was done in Female Closed CI in Ankara, Turkey. The study was conducted on 30 female inmates. Before the implementation of nursing interventions in the initial phase of the study, female inmates were evaluated in terms of physical health problems and health behavior using forms, a physical examination, medical history, health files (file containing medical information related to prisons) and the Omaha System (OS). Findings obtained from evaluations were grouped and symptoms-findings were expressed with OS diagnosis codes. Knowledge, behavior and status scores of prisoners in relation to health problems were determined. After the implementation of the nursing interventions, female inmates were evaluated in terms of physical health problems and health behavior using OS. The research data were collected using the Female Evaluation Form developed by the researcher and the OS. It was found that knowledge, behavior and status scores of prisoners significantly increased after the implementation of nursing interventions (p < 0.05).

Keywords: Correctional institution, correctional nursing, prison nursing, female inmates, physical health problems, health behaviors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
58 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
57 The Impact of COVID-19 Pandemic on Acute Urology Admissions in a Busy District General Hospital in the UK

Authors: D. Bheenick, M. Young, M. Elmussareh, A. Ali

Abstract:

Coronavirus disease 2019 (COVID-19) has had unprecedented effects on the healthcare system in the UK. The pandemic has impacted every service within secondary care, including urology. Our objective is to determine how COVID-19 has influenced acute urology admissions in a busy district general hospital in the UK. To conduct the study, retrospective data of patients presenting acutely to the urology department were collected between January 13 to March 22, 2020 (pre-lockdown period) and March 23 to May 31, 2020 (lockdown period). The nature of referrals, types of admission encountered, and management required in accordance with the new set of protocols established during the lockdown period were analysed and compared to the same data prior to UK lockdown. Included in the study were 1092 patients. The results show that an overall reduction of 32.5% was seen in the total number of admissions. A marked decrease was seen in non-urological pathology as compared to other categories. Urolithiasis showed the highest proportional increase. Treatment varied proportionately to the diagnosis, with conservative management accounting for the most likely treatment during lockdown. However, the proportion of patients requiring interventions during the lockdown period increased overall. No comparative differences were observed during the two periods in terms of source of referral, length of stay and patient age. The results of the study concluded that the admission rate showed a decrease, with no significant difference in the nature and timing of presentation. Our department was able to continue providing effective management to patients presenting acutely during the COVID-19 outbreak.

Keywords: COVID-19, lockdown, admissions, urology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
56 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: Stress, functional near-infrared spectroscopy, frontal lobe, state-trait anxiety inventory score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1166
55 Quality of Life Assessment across the Cancer Continuum: Understanding the Role of an Exercise Rehabilitation Programme

Authors: Bernat-Carles Serdà Ferrer, Arantza Del Valle Gómez

Abstract:

The Quality of Life (QoL) paradigm is multidimensional, dynamic and modular and its definition differs across the cancer continuum. The challenge in the interpretation of QoL data in clinical research is that QoL is influenced by psychological phenomena such as adaptation to illness. This research aims to obtain a valid and sensitive assessment of QoL change over the continuum disease, and to evaluate a rehabilitation programme aimed at inverting the observed decrease in QoL when patients return to daily living activities. The sample comprised 66 men. Patients were first assessed to establish a baseline (P1-diagnosis). This was followed by a post-test (P2-discharge) and a then-test measurement (P3-retrospective evaluation) and after returning home patients were randomized in experimental and control groups. The experimental group attended a rehabilitation programme over 24 weeks (P4). Results show that from baseline to post-test, QoL decreased significantly. The recalibration then-test confirmed a low QoL in all periods evaluated. Significant differences between the experimental and control groups prove the positive effect of the Exercise Rehabilitation Programme (ERP) on QoL. Understanding the real dynamic of QoL over time would help to adapt rehabilitation programmes by improving sensitivity and efficacy and provide professionals with a more accurate perception of the impact of treatment and side effects on patients’ QoL. Our results underline the importance of changing the approach adopted by health professionals towards one of watchful waiting on patients’ QoL until their complete recovery in daily life.

Keywords: Prostate cancer, quality of life, rehabilitation programme, response shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1139
54 Bone Mineral Density and Frequency of Low-Trauma Fractures in Ukrainian Women with Metabolic Syndrome

Authors: Vladyslav Povoroznyuk, Larysa Martynyuk, Iryna Syzonenko, Liliya Martynyuk

Abstract:

Osteoporosis is one of the important problems in postmenopausal women due to an increased risk of sudden and unexpected fractures. This study is aimed to determine the connection between bone mineral density (BMD) and trabecular bone score (TBS) in Ukrainian women suffering from metabolic syndrome. Participating in the study, 566 menopausal women aged 50-79 year-old were examined and divided into two groups: Group A included 336 women with no obesity (BMI ≤ 29.9 kg/m2), and Group B – 230 women with metabolic syndrome (diagnosis according to IDF criteria, 2005). Dual-energy X-ray absorptiometry was used for measuring of lumbar spine (L1-L4), femoral neck, total body and forearm BMD and bone quality indexes (last according to Med-Imaps installation). Data were analyzed using Statistical Package 6.0. A significant increase of lumbar spine (L1-L4), femoral neck, total body and ultradistal radius BMD was found in women with metabolic syndrome compared to those without obesity (p < 0.001) both in their totality and in groups of 50-59 years, 60-69 years, and 70-79 years. TBS was significantly higher in non-obese women compared to metabolic syndrome patients of 50-59 years and in the general sample (p < 0.05). Analysis showed significant positive correlation between body mass index (BMI) and BMD at all levels. Significant negative correlation between BMI and TBS (L1-L4) was established. Despite the fact that BMD indexes were significantly higher in women with metabolic syndrome, the frequency of vertebral and non-vertebral fractures did not differ significantly in the groups of patients.

Keywords: Bone mineral density, trabecular bone score, metabolic syndrome, fracture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
53 Automatic Removal of Ocular Artifacts using JADE Algorithm and Neural Network

Authors: V Krishnaveni, S Jayaraman, A Gunasekaran, K Ramadoss

Abstract:

The ElectroEncephaloGram (EEG) is useful for clinical diagnosis and biomedical research. EEG signals often contain strong ElectroOculoGram (EOG) artifacts produced by eye movements and eye blinks especially in EEG recorded from frontal channels. These artifacts obscure the underlying brain activity, making its visual or automated inspection difficult. The goal of ocular artifact removal is to remove ocular artifacts from the recorded EEG, leaving the underlying background signals due to brain activity. In recent times, Independent Component Analysis (ICA) algorithms have demonstrated superior potential in obtaining the least dependent source components. In this paper, the independent components are obtained by using the JADE algorithm (best separating algorithm) and are classified into either artifact component or neural component. Neural Network is used for the classification of the obtained independent components. Neural Network requires input features that exactly represent the true character of the input signals so that the neural network could classify the signals based on those key characters that differentiate between various signals. In this work, Auto Regressive (AR) coefficients are used as the input features for classification. Two neural network approaches are used to learn classification rules from EEG data. First, a Polynomial Neural Network (PNN) trained by GMDH (Group Method of Data Handling) algorithm is used and secondly, feed-forward neural network classifier trained by a standard back-propagation algorithm is used for classification and the results show that JADE-FNN performs better than JADEPNN.

Keywords: Auto Regressive (AR) Coefficients, Feed Forward Neural Network (FNN), Joint Approximation Diagonalisation of Eigen matrices (JADE) Algorithm, Polynomial Neural Network (PNN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
52 The Effects of Pilates and McKenzie Exercises on Quality of Life and Lumbar Spine Position Sense in Patients with Low Back Pain: A Comparative Study with a 4-Week Follow-Up

Authors: Vahid Mazloum, Mansour Sahebozamani, Amirhossein Barati, Nouzar Nakhaee, Pouya Rabiei

Abstract:

Non-specific chronic low back pain (NSCLBP) is a common condition with no exact diagnosis and mechanism for its occurrence. Recently, different therapeutic exercises have taken into account to manage NSCLBP. So, the aim of this study has mainly been placed on comparing the effects of Pilates and Mackenzie exercises on quality of life (QOL) lumbar spine position sense (LSPS) in patients with NSCLBP. In this randomized clinical trial, 47 patients with NSCLBP were voluntarily divided into three groups of Pilates (n=16) (with mean age 37.1 ± 9.5 years, height 168.9 ± 7.4 cm, body mass 76.1 ± 5.9 k), McKenzie (n=15) (with mean age 42.7 ± 8.1 years, height 165.7 ± 6.8, body mass 74.1 ± 4.8 kg) and control (n=16) (with mean age 39.3 ± 9.8 years, height 168.1 ± 8.1 cm, body mass 74.2 ± 5.8 kg). Primary outcome included QOL and secondary was LSPS. Both variables were assessed by the WHOQOL-BREF questionnaires and electrogoniameter, respectively. The measurements were performed at baseline, following a 6-week intervention, and after a 4-week follow-up. The ANCOVA test at P < 0.05 was administrated to analyze the collected data using SPSS software. There was a statistically significant difference between experimental groups and the control group to improve QOL. But, no difference was seen regarding the effects of two exercises on LSPS (p < 0.05). Both Pilates and Mackenzie exercises demonstrated improvement in QOL after 6-week intervention and a 4-week follow-up while none of them considerably affected LSPS. Further studies are required to establish a supporting evidence for the effectiveness of two exercises on NSCLBP.

Keywords: Pilates, Mackenzie, proprioception, low back pain, physical health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
51 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1179
50 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: A. Belhaj Mohamed, M. Saidi, N. Boucherb, N. Ourtani, A. Soltani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GCMS), capillary GC with flame-ionization detection, Compound Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (- 198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: Biomarkers, oil and gas seeps, organic geochemistry, source rock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3450
49 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology

Authors: Sanjeev Kumar Appicharla

Abstract:

This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety critical incident to raise awareness of biases in systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the Methodology used to model and analyse the safety-critical incident. The SIRI Methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the Management Oversight and Risk Tree technique. The benefits of the SIRI Methodology are threefold: first is that it incorporates “Heuristics and Biases” approach, in the Management Oversight and Risk Tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling technique. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organisational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signalling firms and transport planners, and front-line staff such that lessons learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner’s and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision making and risk management processes and practices in the IEC 15288 Systems Engineering standard, and in the industrial context such as the GB railways and Artificial Intelligence (AI) contexts as well.

Keywords: Accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 381
48 Patterns of Malignant and Benign Breast Lesions in Hail Region: A Retrospective Study at King Khalid Hospital

Authors: Laila Seada, Ashraf Ibrahim, Amjad Al Shammari

Abstract:

Background and Objectives: Breast carcinoma is the most common cancer of females in Hail region, accounting for 31% of all diagnosed cancer cases followed by thyroid carcinoma (25%) and colorectal carcinoma (13%). Methods: In the present retrospective study, all cases of breast lesions received at the histopathology department in King Khalid Hospital, Hail, during the period from May 2011 to April 2016 have been retrieved from department files. For all cases, a trucut biopsy, lumpectomy, or modified radical mastectomy was available for histopathologic diagnosis, while 105/140 (75%) had, as well, preoperative fine needle aspirates (FNA). Results: 49 cases out of 140 (35%) breast lesions were carcinomas: 44/49 (89.75%) was invasive ductal, 2/49(4.1%) invasive lobular carcinomas, 1/49(2.05%) intracystic low grade papillary carcinoma and 2/49 (4.1%) ductal carcinoma in situ (DCIS). Mean age for malignant cases was 45.06 (+/-10.58): 32.6% were below the age of 40 and 30.6 below 50 years, 18.3% below 60 and 16.3% below 70 years. For the benign group, mean age was 32.52 (+/10.5) years. Benign lesions were in order of frequency: 34 fibroadenomas, 14 fibrocystic disease, 12 chronic mastitis, five granulomatous mastitis, three intraductal papillomas, and three benign phyllodes tumor. Tubular adenoma, lipoma, skin nevus, pilomatrixoma, and breast reduction specimens constituted the remaining specimens. Conclusion: Breast lesions are common in our series and invasive carcinoma accounts for more than 1/3rd of the lumps, with 63.2% incidence in pre-menopausal ladies, below the age of 50 years. FNA as a non-invasive procedure, proved to be an effective tool in diagnosing both benign and malignant/suspicious breast lumps and should continue to be used as a first assessment line of palpable breast masses.

Keywords: Age incidence, breast carcinoma, fine needle aspiration, Hail Region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
47 Factors Affecting Access to Education: The Experiences of Parents of Children Who Are Deaf or Hard of Hearing

Authors: Hanh Thi My Nguyen

Abstract:

The purpose of this research is to examine the experiences of parents of children who are deaf or hard of hearing in supporting their children to access education in Vietnam. Parents play a crucial role in supporting their children to gain full access to education. It was widely reported that parents of those children confronted a range of problems to support their children to access education. To author’s best knowledge, there has been a lack of research exploring the experiences of those parents in literature. This research examines factors affecting those parents in supporting their children to access education. To conduct the study, qualitative approach using a phenomenological research design was chosen to explore the central phenomena. Ten parents of children who were diagnosed as deaf or hard of hearing and aged 6-9 years were recruited through the support of the Association of Parents of Children with Hearing Impairment. Participants were interviewed via telephone with a mix of open and closed questions; interviews were audio recorded, transcribed and thematically analysed. The research results show that there are nine main factors that affected the parents in this study in making decisions relating to education for their children including: lack of information resources, perspectives of those parents on communication approaches, the families’ financial capacity, the psychological impact on the participants after their children’ diagnosis, the attitude of family members, attitude of school administrators, lack of local schools and qualified teachers, and current education system for the deaf in Vietnam. Apart from those factors, the lack of knowledge of the participants’ partners about deaf education and the partners’ employment are barriers to educational access and successful communication with their child.

Keywords: Access to education, deaf, hard of hearing, parents experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
46 Role of Pro-Inflammatory and Regulatory Cytokines in Pathogenesis of Graves’ Disease in Association with Autoantibody Thyroid and Regulatory FoxP3 T-Cells

Authors: Dwitya Elvira, Eryati Darwin

Abstract:

Background: Graves’ disease (GD) is an autoimmune thyroid disease. Imbalance of Th1/Th2 cells and T-regulatory (Treg)/Th17 cells was thought to play pivotal role in the pathogenesis of GD. Treg FoxP3 produced TGF-β to maintain regulatory function, and Th17 cells produced IL-17 as cytokines that were thought in mediating several autoimmune diseases. The aim of this study is to assess the role of IL-17 and TGF-β in the pathogenesis of GD and to investigate its correlation with Thyroid Stimulating Hormone Receptor Antibody (TRAb) and Treg FoxP3 expression. Method: 30 GD patients and 27 age and sex-matched controls were enrolled in this study. Diagnosis of GD was based on clinical and biochemical of GD. Serum IL-17, TGF-β, TRAb, and FoxP3 were measured by enzyme-linked immunosorbent assay (ELISA). Data were analyzed by using SPSS 21.0 (SPSS Inc.). Spearman rank correlation test was used for assessment of correlation. The statistical significance was accepted as P<0.05. Result: There was no significant correlation between IL-17 and TGF-β serum with expression of FoxP3 level in GD, but there was significant correlation between TGF-β and TRAb serum level (P<0.05). Serum levels of IL-17 and TGF-β were found to be elevated in patient group compared to control, where mean values of IL-17 were 14.43±2.15 pg/mL and TGF-β were 10.44±3.19 pg/mL in patients group; and in control group, level of IL-17 were 7.1±1.45 pg/mL and TGF-β were 4.95±1.35 pg/mL. Conclusion: Serum Il-17 and TGF-β were elevated in GD patients that reflect the role of inflammatory and regulatory cytokines activation in pathogenesis of GD. There was significant correlation between TGF-β and TRAb, revealing that Treg cytokines may play a role in pathogenesis of GD.

Keywords: IL-17, TGF-β, FoxP3, Graves’ disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1060
45 The Latency-Amplitude Binomial of Waves Resulting from the Application of Evoked Potentials for the Diagnosis of Dyscalculia

Authors: Maria Isabel Garcia-Planas, Maria Victoria Garcia-Camba

Abstract:

Recent advances in cognitive neuroscience have allowed a step forward in perceiving the processes involved in learning from the point of view of acquiring new information or the modification of existing mental content. The evoked potentials technique reveals how basic brain processes interact to achieve adequate and flexible behaviours. The objective of this work, using evoked potentials, is to study if it is possible to distinguish if a patient suffers a specific type of learning disorder to decide the possible therapies to follow. The methodology used in this work is to analyze the dynamics of different brain areas during a cognitive activity to find the relationships between the other areas analyzed to understand the functioning of neural networks better. Also, the latest advances in neuroscience have revealed the exis-tence of different brain activity in the learning process that can be highlighted through the use of non-invasive, innocuous, low-cost and easy-access techniques such as, among others, the evoked potentials that can help to detect early possible neurodevelopmental difficulties for their subsequent assessment and therapy. From the study of the amplitudes and latencies of the evoked potentials, it is possible to detect brain alterations in the learning process, specifically in dyscalculia, to achieve specific corrective measures for the application of personalized psycho-pedagogical plans that allow obtaining an optimal integral development of the affected people.

Keywords: dyscalculia, neurodevelopment, evoked potentials, learning disabilities, neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 599
44 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk

Abstract:

Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.

Keywords: Bone mineral density, BMD, body mass index, BMI, obesity, overweight, postmenopausal women, osteoarthritis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684