Search results for: career decision efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1795

Search results for: career decision efficacy

1045 An Intelligent Scheme Switching for MIMO Systems Using Fuzzy Logic Technique

Authors: Robert O. Abolade, Olumide O. Ajayi, Zacheaus K. Adeyemo, Solomon A. Adeniran

Abstract:

Link adaptation is an important strategy for achieving robust wireless multimedia communications based on quality of service (QoS) demand. Scheme switching in multiple-input multiple-output (MIMO) systems is an aspect of link adaptation, and it involves selecting among different MIMO transmission schemes or modes so as to adapt to the varying radio channel conditions for the purpose of achieving QoS delivery. However, finding the most appropriate switching method in MIMO links is still a challenge as existing methods are either computationally complex or not always accurate. This paper presents an intelligent switching method for the MIMO system consisting of two schemes - transmit diversity (TD) and spatial multiplexing (SM) - using fuzzy logic technique. In this method, two channel quality indicators (CQI) namely average received signal-to-noise ratio (RSNR) and received signal strength indicator (RSSI) are measured and are passed as inputs to the fuzzy logic system which then gives a decision – an inference. The switching decision of the fuzzy logic system is fed back to the transmitter to switch between the TD and SM schemes. Simulation results show that the proposed fuzzy logic – based switching technique outperforms conventional static switching technique in terms of bit error rate and spectral efficiency.

Keywords: Channel quality indicator, fuzzy logic, link adaptation, MIMO, spatial multiplexing, transmit diversity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
1044 Gender Differences in Negotiation: Considering the Usual Driving Forces?

Authors: Claude Alavoine, Ferkan Kaplanseren

Abstract:

Negotiation is a specific form of interaction based on communication in which the parties enter into deliberately, each with clear but different interests or goals and a mutual dependency towards a decision due to be taken at the end of the confrontation. Consequently, negotiation is a complex activity involving many different disciplines from the strategic aspects and the decision making process to the evaluation of alternatives or outcomes and the exchange of information. While gender differences can be considered as one of the most researched topic within negotiation studies, empirical works and theory present many conflicting evidences and results about the role of gender in the process or the outcome. Furthermore, little interest has been shown over gender differences in the definition of what is negotiation, its essence or fundamental elements. Or, as differences exist in practices, it might be essential to study if the starting point of these discrepancies does not come from different considerations about what is negotiation and what will encourage the participants in their strategic decisions. Some recent and promising experiments made with diverse groups show that male and female participants in a common and shared situation barely consider the same way the concepts of power, trust or stakes which are largely considered as the usual driving forces of any negotiation. Furthermore, results from Human Resource self-assessment tests display and confirm considerable differences between individuals regarding essential behavioral dimensions like capacity to improvise and to achieve, aptitude to conciliate or to compete and orientation towards power and group domination which are also part of negotiation skills. Our intention in this paper is to confront these dimensions with negotiation’s usual driving forces in order to build up new paths for further research.

Keywords: Gender, negotiation, personality, power, stakes, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
1043 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications

Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber

Abstract:

Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.

Keywords: Classification, High dimensional data, Machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
1042 Study on Mitigation Measures of Gumti Hydro Power Plant Using Analytic Hierarchy Process and Concordance Analysis Techniques

Authors: K. Majumdar, S. Datta

Abstract:

Electricity is recognized as fundamental to industrialization and improving the quality of life of the people. Harnessing the immense untapped hydropower potential in Tripura region opens avenues for growth and provides an opportunity to improve the well-being of the people of the region, while making substantial contribution to the national economy. Gumti hydro power plant generates power to mitigate the crisis of power in Tripura, India. The first unit of hydro power plant (5MW) was commissioned in June 1976 & another two units of 5 MW was commissioned simultaneously. But out of 15MW capacity at present only 8MW- 9MW power is produced from Gumti hydro power plant during rainy season. But during lean season the production reduces to 0.5MW due to shortage of water. Now, it is essential to implement some mitigation measures so that the further atrocities can be prevented and originality will be possible to restore. The decision making ability of the Analytic Hierarchy Process (AHP) and Concordance Analysis Techniques (CAT) are utilized to identify the better decision or solution to the present problem. Some related attributes are identified by the method of surveying within the experts and the available reports and literatures. Similar criteria are removed and ultimately seven relevant ones are identified. All the attributes are compared with each other and rated accordingly to their importance over the other with the help of Pair wise Comparison Matrix. In the present investigation different mitigation measures are identified and compared to find the best suitable alternative which can solve the present uncertainties involving the existence of the Gumti Hydro Power Plant.

Keywords: Concordance Analysis Techniques, Analytic Hierarchy Process, Hydro Power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
1041 Ranking of the Main Criteria for Contractor Selection Procedures on Major Construction Projects in Libya Using the Delphi Method

Authors: Othoman Elsayah, Naren Gupta, Binsheng Zhang

Abstract:

The construction sector constitutes one of the most important sectors in the economy of any country. Contractor selection is a critical decision that is undertaken by client organizations and is central to the success of any construction project. Contractor selection (CS) is a process which involves investigating, screening and determining whether candidate contractors have the technical and financial capability to be accepted to formally tender for construction work. The process should be conducted prior to the award of contract, characterized by many factors such as: contactor’s skills, experience on similar projects, track- record in the industry, and financial stability. However, this paper evaluates the current state of knowledge in relation to contractor selection process and demonstrates the findings from the analysis of the data collected from the Delphi questionnaire survey. The survey was conducted with a group of 12 experts working in the Libyan construction industry (LCI). The paper starts by briefly explaining the general outline of the questionnaire including the survey participation rate, the different fields the experts came from, and the business titles of the participants. Then the paper describes the tests used to determine when the experts had reached consensus. The paper is based on research which aims to develop rank contractor selection criteria with specific application to make construction projects in the Libyan context. The findings of this study will be utilized to establish the scope of work that will be used as part of a PhD research.

Keywords: Contractor selection, Libyan construction industry, Decision experts and Delphi technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
1040 Efficacy of Anti-phishing Measures and Strategies - A Research Analysis

Authors: Gundeep Singh Bindra

Abstract:

Statistics indicate that more than 1000 phishing attacks are launched every month. With 57 million people hit by the fraud so far in America alone, how do we combat phishing?This publication aims to discuss strategies in the war against Phishing. This study is an examination of the analysis and critique found in the ways adopted at various levels to counter the crescendo of phishing attacks and new techniques being adopted for the same. An analysis of the measures taken up by the varied popular Mail servers and popular browsers is done under this study. This work intends to increase the understanding and awareness of the internet user across the globe and even discusses plausible countermeasures at the users as well as the developers end. This conceptual paper will contribute to future research on similar topics.

Keywords: Anti-phishing, countermeasures, effectiveness, fake pages, security analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
1039 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553
1038 Estimating Affected Croplands and Potential Crop Yield Loss of an Individual Farmer Due to Floods

Authors: Shima Nabinejad, Holger Schüttrumpf

Abstract:

Farmers who are living in flood-prone areas such as coasts are exposed to storm surges increased due to climate change. Crop cultivation is the most important economic activity of farmers, and in the time of flooding, agricultural lands are subject to inundation. Additionally, overflow saline water causes more severe damage outcomes than riverine flooding. Agricultural crops are more vulnerable to salinity than other land uses for which the economic damages may continue for a number of years even after flooding and affect farmers’ decision-making for the following year. Therefore, it is essential to assess what extent the agricultural areas are flooded and how much the associated flood damage to each individual farmer is. To address these questions, we integrated farmers’ decision-making at farm-scale with flood risk management. The integrated model includes identification of hazard scenarios, failure analysis of structural measures, derivation of hydraulic parameters for the inundated areas and analysis of the economic damages experienced by each farmer. The present study has two aims; firstly, it attempts to investigate the flooded cropland and potential crop damages for the whole area. Secondly, it compares them among farmers’ field for three flood scenarios, which differ in breach locations of the flood protection structure. To achieve its goal, the spatial distribution of fields and cultivated crops of farmers were fed into the flood risk model, and a 100-year storm surge hydrograph was selected as the flood event. The study area was Pellworm Island that is located in the German Wadden Sea National Park and surrounded by North Sea. Due to high salt content in seawater of North Sea, crops cultivated in the agricultural areas of Pellworm Island are 100% destroyed by storm surges which were taken into account in developing of depth-damage curve for analysis of consequences. As a result, inundated croplands and economic damages to crops were estimated in the whole Island which was further compared for six selected farmers under three flood scenarios. The results demonstrate the significance and the flexibility of the proposed model in flood risk assessment of flood-prone areas by integrating flood risk management and decision-making.

Keywords: Crop damages, flood risk analysis, individual farmer, inundated cropland, Pellworm Island, storm surges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
1037 Modern Tragic Substance in O’Neill’s Desire under the Elms and Mourning Becomes Electra

Authors: Azza Taha Zaki

Abstract:

The position Eugene O’Neill occupies in the history of American drama is undisputable. Critics have agreed that the American theatre was waiting for O’Neill to give it substance, character, and value. The American dramatist continues to be considered as a major influence on the body of dramatic repertoire across the globe. The American theatre before O’Neill knew playwrights who were mostly viewed as entertainers. The serious drama had to wait until O’Neill started his career with expressionistic and social drama. His breakthrough, however, came in 1925 when he published Desire Under the Elms, described as the first important tragedy to be written in America. Mourning Becomes Electra, published in 1931, further reinforced the reputation of Eugene O’Neill and was described as his 'magnum opus'. Aspiring to portray the essence of life and man’s innermost conflicts, O’Neill turned to the classical model, rather than to social realistic drama, to create modern tragedies with the aid of the then-new science of psychology. The present paper aims to undertake an in-depth study of how overtones from classical tragedies by the classical masters Aeschylus, Sophocles, and Euripides resonate through O’Neill’s two plays. The paper shows how leaning on classical themes and concepts interpreted in terms of psychological forces have added depth and tragic substance to a modern milieu and produced masterpieces of dramaturgy.

Keywords: classical, drama, O'Neill, modern, tragic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 601
1036 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: Economic production quantity, random cost, supply chain management, vendor-managed inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
1035 Millennials' Viewpoints about Sustainable Hotels' Practices in Egypt: Promoting Responsible Consumerism

Authors: Jailan Mohamed El Demerdash

Abstract:

Millennials are a distinctive and dominant consumer group whose behavior, preferences and purchase decisions are broadly explored but not fully understood yet. Making up the largest market segment in the world, and in Egypt, they have the power to reinvent the hospitality industry and contribute to forming prospective demand for green hotels by showing willingness to adopting their environmental-friendly practices. The current study aims to enhance better understanding of Millennials' perception about sustainable initiatives and to increase the prediction power of their intentions regarding green hotel practices in Egypt. In doing so, the study is exploring the relation among different factors; Millennials' environmental awareness, their acceptance of green practices and their willingness to pay more for them. Millennials' profile, their preferences and environmental decision-making process are brought under light to stimulate actions of hospitality decision-makers and hoteliers. Bearing in mind that responsible consumerism is depending on understanding the different influences on consumption. The study questionnaire was composed of four sections and it was distributed to random Egyptian travelers' blogs and Facebook groups, with approximately 8000 members. Analysis of variance test (ANOVA) was used to examine the study variables. The findings indicated that Millennials' environmental awareness will not be a significant factor in their acceptance of hotel green practices, as well as, their willingness to pay more for them. However, Millennials' acceptance of the level of hotel green practices will have an impact on their willingness to pay more. Millennials were found to have a noticeable level of environmental awareness but lack commitment to tolerating hotel green practices and their associated high prices.

Keywords: Millennials, environment, awareness, green practices, paying more, Egypt.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1084
1034 Heading for Modern Construction Management: Recommendation for Employers

Authors: Robin Becker, Maike Eilers, Nane Roetmann, Manfred Helmus

Abstract:

The shortage of junior staff in the construction industry is a problem that will be further exacerbated in the coming years by the retirement of the baby-boom generations (1955-1969) from employment. In addition, the current working conditions in the field of construction management are not attractive for young professionals. A survey of students as part of the paper revealed a desire for an increase in flexibility and an improved work-life balance in everyday working life. Students of civil engineering and architecture are basically interested in a career in construction management but have reservations due to the image of the profession and the current working conditions. A survey among experts from the construction industry, also as a part of the paper, shows that the profession can become more attractive. This report provides recommendations for action in the form of working modules to improve the working conditions of employees. If these are taken into account, graduates can be attracted to the profession of construction management, and existing staff can be retained more effectively. The aim of this report is to show incentives for employers to respond to the wishes and needs of their current and future employees to the extent that can be implemented.

Keywords: Modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271
1033 Towards Improved Public Information on Industrial Emissions in Italy: Concepts and Specific Issues Associated to the Italian Experience in IPPC Permit Licensing

Authors: Mazziotti Gomez de Teran C., Fiore D., Cola B., Fardelli A.

Abstract:

The present paper summarizes the analysis of the request for consultation of information and data on industrial emissions made publicly available on the web site of the Ministry of Environment, Land and Sea on integrated pollution prevention and control from large industrial installations, the so called “AIA Portal”. As a matter of fact, a huge amount of information on national industrial plants is already available on internet, although it is usually proposed as textual documentation or images. Thus, it is not possible to access all the relevant information through interoperability systems and also to retrieval relevant information for decision making purposes as well as rising of awareness on environmental issue. Moreover, since in Italy the number of institutional and private subjects involved in the management of the public information on industrial emissions is substantial, the access to the information is provided on internet web sites according to different criteria; thus, at present it is not structurally homogeneous and comparable. To overcome the mentioned difficulties in the case of the Coordinating Committee for the implementation of the Agreement for the industrial area in Taranto and Statte, operating before the IPPC permit granting procedures of the relevant installation located in the area, a big effort was devoted to elaborate and to validate data and information on characterization of soil, ground water aquifer and coastal sea at disposal of different subjects to derive a global perspective for decision making purposes. Thus, the present paper also focuses on main outcomes matured during such experience.

Keywords: Public information, emissions into atmosphere, IPPC permits, territorial information systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058
1032 Motivating the Independent Learner at the Arab Open University, Kuwait

Authors: Hassan A. Sharafuddin, Chekra A. Allani

Abstract:

Academicians at the Arab Open University have always voiced their concern about the efficacy of the blended learning process. Based on 75% independent study and 25% face-toface tutorial, it poses the challenge of the predisposition to adjustment. Being used to the psychology of traditional educational systems, AOU students cannot be easily weaned from being spoonfed. Hence they lack the motivation to plunge into self-study. For better involvement of AOU students into the learning practices, it is imperative to diagnose the factors that impede or increase their motivation. This is conducted through an empirical study grounded upon observations and tested hypothesis and aimed at monitoring and optimizing the students’ learning outcome. Recommendations of the research will follow the findings.

Keywords: Academic performance, blended learning, educational psychology, independent study, pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2517
1031 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management

Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal

Abstract:

Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.

Keywords: Sustainable supply chain management, supplier selection, MCDM tools, AHP analysis, TOPSIS method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3490
1030 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480
1029 Participation in Co-Curricular Activities of Undergraduate Nursing Students Attending the Leadership Promoting Program Based on Self-Directed Learning Approach

Authors: Porntipa Taksin, Jutamas Wongchan, Amornrat Karamee

Abstract:

The researchers’ experience of student affairs in 2011-2013, we found that few undergraduate nursing students become student association members who participated in co-curricular activities, they have limited skill of self-directed-learning and leadership. We developed “A Leadership Promoting Program” using Self-Directed Learning concept. The program included six activities: 1) Breaking the ice, Decoding time, Creative SMO, Know me-Understand you, Positive thinking, and Creative dialogue, which include four aspects of these activities: decision-making, implementation, benefits, and evaluation. The one-group, pretest-posttest quasi-experimental research was designed to examine the effects of the program on participation in co-curricular activities. Thirty five students participated in the program. All were members of the board of undergraduate nursing student association of Boromarajonani College of Nursing, Chonburi. All subjects completed the questionnaire about participation in the activities at beginning and at the end of the program. Data were analyzed using descriptive statistics and dependent t-test. The results showed that the posttest scores of all four aspects mean were significantly higher than the pretest scores (t=3.30, p<.01). Three aspects had high mean scores, Benefits (Mean = 3.24, S.D. = 0.83), Decision-making (Mean = 3.21, S.D. = 0.59), and Implementation (Mean=3.06, S.D.=0.52). However, scores on evaluation falls in moderate scale (Mean = 2.68, S.D. = 1.13). Therefore, the Leadership Promoting Program based on Self-Directed Learning Approach could be a method to improve students’ participation in co-curricular activities and leadership.

Keywords: Participation in co-curricular activities, undergraduate nursing students, leadership promoting program, self-directed learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
1028 CFD Simulations to Study the Cooling Effects of Different Greening Modifications

Authors: An-Shik Yang, Chih-Yung Wen, Chiang-Ho Cheng, Yu-Hsuan Juan

Abstract:

The objective of this study is to conduct computational fluid dynamic (CFD) simulations for evaluating the cooling efficacy from vegetation implanted in a public park in the Taipei, Taiwan. To probe the impacts of park renewal by means of adding three pavilions and supplementary green areas on urban microclimates, the simulated results have revealed that the park having a higher percentage of green coverage ratio (GCR) tended to experience a better cooling effect. These findings can be used to explore the effects of different greening modifications on urban environments for achieving an effective thermal comfort in urban public spaces.

Keywords: CFD simulations, green coverage ratio, urban heat island, urban public park.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2831
1027 Results of Percutaneous Nephrolithotomy under Spinal Anesthesia

Authors: Babak Borzouei, Seyed Habibollah Mousavi-Bahar

Abstract:

Recently, there has been a considerable increase in the number of procedures carried out under regional anesthesia. However, percutaneous nephrolithotomy (PCNL) procedures are usually performed under general anesthesia. The aim of this study was to assess the safety and efficacy of PCNL under spinal anesthesia in patients with renal calculi. We describe our 9 years experience of performing PCNL under spinal anesthesia for 387 patients with large stones of the upper urinary tract, with regard to the effectiveness and side effects. All patients received spinal anesthetics (Lidocain 5%, or Bupivacaine 0.75%) and underwent PCNL in prone position. The success rate was 94.1%. The incidence of complications was 11.6%. PCNL under spinal anesthesia is feasible, safe, and well-tolerated in management of patients with renal stones.

Keywords: percutaneous nephrolithotomy, spinal anesthesia, renal calculi

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
1026 Careers-Outreach Programmes for Children: Lessons for Perceptions of Engineering and Manufacturing

Authors: Niall J. English, Sylvia Leatham, Maria Isabel Meza Silva, Denis P. Dowling

Abstract:

The training and education of under- and post-graduate students can be promoted by more active learning especially in engineering, overcoming more passive and vicarious experiences and approaches in their documented effectiveness. However, the possibility of outreach to young pupils and school-children in primary and secondary schools is a lesser explored area in terms of Education and Public Engagement (EPE) efforts – as relates to feedback and influence on shaping 3rd-level engineering training and education. Therefore, the outreach and school-visit agenda constitutes an interesting avenue to observe how active learning, careers stimulus and EPE efforts for young children and teenagers can teach the university sector, to improve future engineering-teaching standards and enhance both quality and capabilities of practice. This intervention involved careers-outreach efforts to lead to statistical determinations of motivations towards engineering, manufacturing and training. The aim was to gauge to what extent this intervention would lead to an increased careers awareness in engineering, using the method of the schools-visits programme as the means for so doing. It was found that this led to an increase in engagement by school pupils with engineering as a career option and a greater awareness of the importance of manufacturing. 

Keywords: outreach, education and public engagement, careers, peer interactions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
1025 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
1024 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting and tracking of physical items in combination with Internet of Things (IoT) developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm decision-making process does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyze on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue and environmental impact. Evolutionary Computing (EC) can be very effective in finding the optimal combination of sets of some objects and finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and EC in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management and its uptake has become a continuing trend.

Keywords: Big data, evolutionary computing, cloud, precision technologies

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
1023 An Autonomous Collaborative Forecasting System Implementation – The First Step towards Successful CPFR System

Authors: Chi-Fang Huang, Yun-Shiow Chen, Yun-Kung Chung

Abstract:

In the past decade, artificial neural networks (ANNs) have been regarded as an instrument for problem-solving and decision-making; indeed, they have already done with a substantial efficiency and effectiveness improvement in industries and businesses. In this paper, the Back-Propagation neural Networks (BPNs) will be modulated to demonstrate the performance of the collaborative forecasting (CF) function of a Collaborative Planning, Forecasting and Replenishment (CPFR®) system. CPFR functions the balance between the sufficient product supply and the necessary customer demand in a Supply and Demand Chain (SDC). Several classical standard BPN will be grouped, collaborated and exploited for the easy implementation of the proposed modular ANN framework based on the topology of a SDC. Each individual BPN is applied as a modular tool to perform the task of forecasting SKUs (Stock-Keeping Units) levels that are managed and supervised at a POS (point of sale), a wholesaler, and a manufacturer in an SDC. The proposed modular BPN-based CF system will be exemplified and experimentally verified using lots of datasets of the simulated SDC. The experimental results showed that a complex CF problem can be divided into a group of simpler sub-problems based on the single independent trading partners distributed over SDC, and its SKU forecasting accuracy was satisfied when the system forecasted values compared to the original simulated SDC data. The primary task of implementing an autonomous CF involves the study of supervised ANN learning methodology which aims at making “knowledgeable" decision for the best SKU sales plan and stocks management.

Keywords: CPFR, artificial neural networks, global logistics, supply and demand chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1022 Attribute Selection for Preference Functions in Engineering Design

Authors: Ali E. Abbas

Abstract:

Industrial Engineering is a broad multidisciplinary field with intersections and applications in numerous areas. When designing a product, it is important to determine the appropriate attributes of value and the preference function for which the product is optimized. This paper provides some guidelines on appropriate selection of attributes for preference and value functions for engineering design.

Keywords: Decision analysis, engineering design, direct vs. indirect values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
1021 The Quality of Working Life and the Organizational Commitment of Municipal Employee in Samut Sakhon Province

Authors: Mananya Meenakorn

Abstract:

This research aims to investigate: (1) Relationship between the quality of working life and organizational commitment of municipal employee in Samut Sakhon Province. (2) To compare the quality of working life and the organizational commitment of municipal employee in Samut Sakhon Province by the gender, age, education, official experience, position, division, and income. This study is a quantitative research; data was collected by questionnaires distributed to the municipal employee in Samut Sakhon province for 241 sample by stratified random sampling. Data was analyzed by descriptive statistic including percentage, mean, standard deviation and inferential statistic including t-test, F-test and Pearson correlation for hypothesis testing. Finding showed that the quality of working life and the organizational commitment of municipal Employee in Samut Sakhon province in terms of compensation and fair has a positive correlation (r = 0.673) and the comparison of the quality of working life and organizational commitment of municipal employees in Samut Sakhon province by gender. We found that the overall difference was statistically significant at the 0.05 level and we also found stability and progress in career path and the characteristics are beneficial to society has a difference was statistically significant at the 0.01 level, and the participation and social acceptance has a difference was statistically significant at the 0.05 level.

Keywords: Quality of working life, organizational commitment, municipal employee, Samut Sakhon province.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
1020 An Approach on Integrating Cooperative Education Experience into the Engineering Curriculum

Authors: Robin Lok-Wang

Abstract:

The center/unit for industry engagement and collaboration, as well as Internship, plays a significant role at a university. In general, the Center serves as the official interface between industry and the school or department to cultivate students’ early exposure to professional experience. The missions of the Center are not limited to provide a communication channel and collaborative platform for the industries and the university but also to assist students to build their career paths early while still at the university. In recent years, a cooperative education experience (commonly known as a co-op) has been strongly advocated for students to make the school-to-work transition. The nature of the co-op program is not only consistent with the internships/final year design projects, but it is also more industrial-oriented with academic support from faculty at the university. The purpose of this paper is to describe an approach to how cooperative education experience can be integrated into the engineering curriculum. It provides a mutual understanding and exchange of ideas for the approach between the university and industry. A suggested format in terms of timeline, duration, selection of candidates, students, and companies’ expectations for the co-op program is described. Also, feedback from employers/industries shows that a longer-term co-op program is well suited for students compared with a short-term internship. To this end, it provides an insight into collaboration and/or partnership between the university and the industries to prepare professional work-ready graduates.

Keywords: Cooperative education, internship, industry collaboration, engineering curriculum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287
1019 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector

Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh

Abstract:

A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.

Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 408
1018 Increasing the Efficacy of Educators Teaching Online

Authors: Carol Shepherd, Madelon Alpert, Marilyn Koeller

Abstract:

In order to provide and maintain effective pedagogy for the burgeoning virtual reality community, it is vital to have trained faculty in the institutions of higher education who will teach these courses and be able to make full use of their academic knowledge and expertise. As the number of online courses continues to grow, there is a need for these institutions to establish mentoring programs that will support the novice online instructor. The environment in which this takes place and the factors that ensure its success are critical to the adoption of the new instructional delivery format taught by both seasoned educators and adjunct instructors. Effective one-on-one mentoring promotes a professional, compassionate and collegial faculty who will provide a consistent and rigorous academic program for students online.

Keywords: Mentoring seasoned faculty, staff development, online pedagogy, online andragogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
1017 Effective Online Staff Training: Is This Possible?

Authors: C. Rogerson, E. Scott

Abstract:

The purpose of this paper is to consider the introduction of online courses to replace the current classroom-based staff training. The current training is practical, and must be completed before access to the financial computer system is authorized. The long term objective is to measure the efficacy, effectiveness and efficiency of the training, and to establish whether a transfer of knowledge back to the workplace has occurred. This paper begins with an overview explaining the importance of staff training in an evolving, competitive business environment and defines the problem facing this particular organization. A summary of the literature review is followed by a brief discussion of the research methodology and objective. The implementation of the alpha version of the online course is then described. This paper may be of interest to those seeking insights into, or new theory regarding, practical interventions of online learning in the real world.

Keywords: Computer-based courses, e-learning, online training, workplace training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1016 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179