Search results for: Sequential pattern mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1605

Search results for: Sequential pattern mining

855 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
854 Mathematical Modeling of Uncompetitive Inhibition of Bi-Substrate Enzymatic Reactions

Authors: Rafayel A. Azizyan, Aram E. Gevorgyan, Valeri B. Arakelyan, Emil S. Gevorgyan

Abstract:

Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such a complex systems as a biological are. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides, it has been shown that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. 

Keywords: Mathematical modeling, bi-substrate enzymatic reactions, sequential mechanism, ping-pong mechanism, uncompetitive inhibition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3568
853 Reading against the Grain: Transcodifying Stimulus Meaning

Authors: Aba-Carina Pârlog

Abstract:

The paper shows that on transferring sense from the SL to the TL, the translator’s reading against the grain determines the creation of a faulty pattern of rendering the original meaning in the receiving culture which reflects the use of misleading transformative codes. In this case, the translator is a writer per se who decides what goes in and out of the book, how the style is to be ciphered and what elements of ideology are to be highlighted. The paper also proves that figurative language must not be flattened for the sake of clarity or naturalness. The missing figurative elements make the translated text less interesting, less challenging and less vivid which reflects poorly on the writer. There is a close connection between style and the writer’s person. If the writer’s style is very much altered in a translation, the translation is useless as the original writer and his / her imaginative world can no longer be discovered. The purpose of the paper is to prove that adaptation is a dangerous tool which leads to variants that sometimes reflect the original less than the reader would wish to. It contradicts the very essence of the process of translation which is that of making an original work available in a foreign language. If the adaptive transformative codes are so flexible that they encourage the translator to repeatedly leave out parts of the original work, then a subversive pattern emerges which changes the entire book. In conclusion, as a result of using adaptation, manipulative or subversive effects are created in the translated work. This is generally achieved by adding new words or connotations, creating new figures of speech or using explicitations. The additional meanings of the original work are neglected and the translator creates new meanings, implications, emphases and contexts. Again s/he turns into a new author who enjoys the freedom of expressing his / her own ideas without the constraints of the original text. Reading against the grain is unadvisable during the process of translation and consequently, following personal common sense becomes essential in the field of translation as well as everywhere else, so that translation should not become a source of fantasy.

Keywords: Speculative aesthetics, substance of expression, transformative code, translation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
852 Isolation and Identification of Diacylglycerol Acyltransferase Type- 2 (GAT2) Genes from Three Egyptian Olive Cultivars

Authors: Yahia I. Mohamed, Ahmed I. Marzouk, Mohamed A. Yacout

Abstract:

Aim of this work was to study the genetic basis for oil accumulation in olive fruit via tracking DGAT2 (Diacylglycerol acyltransferase type-2) gene in three Egyptian Origen Olive cultivars namely Toffahi, Hamed and Maraki using molecular marker techniques and bioinformatics tools. Results illustrate that, firstly: specific genomic band of Maraki cultivars was identified as DGAT2 (Diacylglycerol acyltransferase type-2) and identical for this gene in Olea europaea with 100% of similarity. Secondly, differential genomic band of Maraki cultivars which produced from RAPD fingerprinting technique reflected predicted distinguished sequence which identified as DGAT2 (Diacylglycerol acyltransferase type-2) in Fragaria vesca subsp. Vesca with 76% of sequential similarity. Third and finally, specific genomic specific band of Hamed cultivars was identified as two fragments, 1- Olea europaea cultivar Koroneiki diacylglycerol acyltransferase type 2 mRNA, complete cds with two matches regions with 99% or 2- Predicted: Fragaria vesca subsp. vesca diacylglycerol O-acyltransferase 2-like (LOC101313050), mRNA with 86 % of similarity.

Keywords: Olea europaea, fingerprinting, Diacylglycerol acyltransferase type- 2 (DGAT2).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
851 Customer Churn Prediction: A Cognitive Approach

Authors: Damith Senanayake, Lakmal Muthugama, Laksheen Mendis, Tiroshan Madushanka

Abstract:

Customer churn prediction is one of the most useful areas of study in customer analytics. Due to the enormous amount of data available for such predictions, machine learning and data mining have been heavily used in this domain. There exist many machine learning algorithms directly applicable for the problem of customer churn prediction, and here, we attempt to experiment on a novel approach by using a cognitive learning based technique in an attempt to improve the results obtained by using a combination of supervised learning methods, with cognitive unsupervised learning methods.

Keywords: Growing Self Organizing Maps, Kernel Methods, Churn Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
850 Discovery of Production Rules with Fuzzy Hierarchy

Authors: Fadl M. Ba-Alwi, Kamal K. Bharadwaj

Abstract:

In this paper a novel algorithm is proposed that integrates the process of fuzzy hierarchy generation and rule discovery for automated discovery of Production Rules with Fuzzy Hierarchy (PRFH) in large databases.A concept of frequency matrix (Freq) introduced to summarize large database that helps in minimizing the number of database accesses, identification and removal of irrelevant attribute values and weak classes during the fuzzy hierarchy generation.Experimental results have established the effectiveness of the proposed algorithm.

Keywords: Data Mining, Degree of subsumption, Freq matrix, Fuzzy hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
849 Inheritance Growth: a Biology Inspired Method to Build Structures in P2P

Authors: Panchalee Sukjit, Herwig Unger

Abstract:

IT infrastructures are becoming more and more difficult. Therefore, in the first industrial IT systems, the P2P paradigm has replaced the traditional client server and methods of self-organization are gaining more and more importance. From the past it is known that especially regular structures like grids may significantly improve the system behavior and performance. This contribution introduces a new algorithm based on a biologic analogue, which may provide the growth of several regular structures on top of anarchic grown P2P- or social network structures.

Keywords: P2P, Pattern generation, Grid, Social network, Inheritance, Reproduction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464
848 A New Approach Defining Angular DMD Using Near Field Aperturing

Authors: S. Al-Sowayan, K. L. Lear

Abstract:

A new technique to quantify the differential mode delay (DMD) in multimode fiber (MMF) is been presented. The technique measures DMD based on angular launch and measurements of the difference in modal delay using variable apertures at the fiber face. The result of the angular spatial filtering revealed less excitation of higher order modes when the laser beam is filtered at higher angles. This result would indicate that DMD profiles would experience a data pattern dependency.

Keywords: Fiber measurements, Fiber optic communications

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
847 Anaerobic Digestion of Coffee Wastewater from a Fast Inoculum Adaptation Stage: Replacement of Complex Substrate

Authors: D. Lepe-Cervantes, E. Leon-Becerril, J. Gomez-Romero, O. Garcia-Depraect, A. Lopez-Lopez

Abstract:

In this study, raw coffee wastewater (CWW) was used as a complex substrate for anaerobic digestion. The inoculum adaptation stage, microbial diversity analysis and biomethane potential (BMP) tests were performed. A fast inoculum adaptation stage was used by the replacement of vinasse to CWW in an anaerobic sequential batch reactor (AnSBR) operated at mesophilic conditions. Illumina MiSeq sequencing was used to analyze the microbial diversity. While, BMP tests using inoculum adapted to CWW were carried out at different inoculum to substrate (I/S) ratios (2:1, 3:1 and 4:1, on a VS basis). Results show that the adaptability percentage was increased gradually until it reaches the highest theoretical value in a short time of 10 d; with a methane yield of 359.10 NmL CH4/g COD-removed; Methanobacterium beijingense was the most abundant microbial (75%) and the greatest specific methane production was achieved at I/S ratio 4:1, whereas the lowest was obtained at 2:1, with BMP values of 320 NmL CH4/g VS and 151 NmL CH4/g VS, respectively. In conclusion, gradual replacement of substrate was a feasible method to adapt the inoculum in a short time even using complex raw substrates, whereas in the BMP tests, the specific methane production was proportional to the initial amount of inoculum.

Keywords: Fast inoculum adaptation, coffee wastewater, biomethane potential test, anaerobic digestion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
846 Construction Methods for Sign Patterns Allowing Nilpotence of Index k

Authors: Jun Luo

Abstract:

In this paper, the smallest such integer k is called by the index (of nilpotence) of B such that Bk = 0. In this paper, we study sign patterns allowing nilpotence of index k and obtain four methods to construct sign patterns allowing nilpotence of index at most k, which generalizes some recent results.

Keywords: Sign pattern, Nilpotence, Jordan block.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
845 Learning and Evaluating Possibilistic Decision Trees using Information Affinity

Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi

Abstract:

This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.

Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
844 Exploring the Activity Fabric of an Intelligent Environment with Hierarchical Hidden Markov Theory

Authors: Chiung-Hui Chen

Abstract:

The Internet of Things (IoT) was designed for widespread convenience. With the smart tag and the sensing network, a large quantity of dynamic information is immediately presented in the IoT. Through the internal communication and interaction, meaningful objects provide real-time services for users. Therefore, the service with appropriate decision-making has become an essential issue. Based on the science of human behavior, this study employed the environment model to record the time sequences and locations of different behaviors and adopted the probability module of the hierarchical Hidden Markov Model for the inference. The statistical analysis was conducted to achieve the following objectives: First, define user behaviors and predict the user behavior routes with the environment model to analyze user purposes. Second, construct the hierarchical Hidden Markov Model according to the logic framework, and establish the sequential intensity among behaviors to get acquainted with the use and activity fabric of the intelligent environment. Third, establish the intensity of the relation between the probability of objects’ being used and the objects. The indicator can describe the possible limitations of the mechanism. As the process is recorded in the information of the system created in this study, these data can be reused to adjust the procedure of intelligent design services.

Keywords: Behavior, big data, hierarchical Hidden Markov Model, intelligent object.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 764
843 Induction of Expressive Rules using the Binary Coding Method

Authors: Seyed R Mousavi

Abstract:

In most rule-induction algorithms, the only operator used against nominal attributes is the equality operator =. In this paper, we first propose the use of the inequality operator, , in addition to the equality operator, to increase the expressiveness of induced rules. Then, we present a new method, Binary Coding, which can be used along with an arbitrary rule-induction algorithm to make use of the inequality operator without any need to change the algorithm. Experimental results suggest that the Binary Coding method is promising enough for further investigation, especially in cases where the minimum number of rules is desirable.

Keywords: Data mining, Inequality operator, Number of rules, Rule-induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
842 Improving Classification in Bayesian Networks using Structural Learning

Authors: Hong Choon Ong

Abstract:

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
841 Data Preprocessing for Supervised Leaning

Authors: S. B. Kotsiantis, D. Kanellopoulos, P. E. Pintelas

Abstract:

Many factors affect the success of Machine Learning (ML) on a given task. The representation and quality of the instance data is first and foremost. If there is much irrelevant and redundant information present or noisy and unreliable data, then knowledge discovery during the training phase is more difficult. It is well known that data preparation and filtering steps take considerable amount of processing time in ML problems. Data pre-processing includes data cleaning, normalization, transformation, feature extraction and selection, etc. The product of data pre-processing is the final training set. It would be nice if a single sequence of data pre-processing algorithms had the best performance for each data set but this is not happened. Thus, we present the most well know algorithms for each step of data pre-processing so that one achieves the best performance for their data set.

Keywords: Data mining, feature selection, data cleaning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6098
840 Efficient Iris Recognition Method for Human Identification

Authors: A. Basit, M. Y. Javed, M. A. Anjum

Abstract:

In this paper, an efficient method for personal identification based on the pattern of human iris is proposed. It is composed of image acquisition, image preprocessing to make a flat iris then it is converted into eigeniris and decision is carried out using only reduction of iris in one dimension. By comparing the eigenirises it is determined whether two irises are similar. The results show that proposed method is quite effective.

Keywords: Biometrics, Canny Operator, Eigeniris, Iris Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
839 Ant Colony Optimization for Feature Subset Selection

Authors: Ahmed Al-Ani

Abstract:

The Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It has recently attracted a lot of attention and has been successfully applied to a number of different optimization problems. Due to the importance of the feature selection problem and the potential of ACO, this paper presents a novel method that utilizes the ACO algorithm to implement a feature subset search procedure. Initial results obtained using the classification of speech segments are very promising.

Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144
838 Utilizing 5G Mobile Connection as a Node in Layer 1 Proof of Authority Blockchain Used for Microtransaction

Authors: Frode van der Laak

Abstract:

The paper contributes to the feasibility of using a 5G mobile connection as a node for a Proof of Authority (PoA) blockchain, which is used for microtransactions at the same time. It uses the phone number identity of the users that are linked to the crypto wallet address. It also proposed a consensus protocol based on PoA blockchain; PoA is a permission blockchain where consensus is achieved through a set of designated authority rather than through mining, as is the case with a Proof of Work (PoW) blockchain. This report will first explain the concept of a PoA blockchain and how it works. It will then discuss the potential benefits and challenges of using a 5G mobile connection as a node in such a blockchain, and finally, the main open problem statement and proposed solutions with the requirements.

Keywords: 5G, mobile, connection, node, PoA, blockchain, microtransaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
837 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
836 Experience Modularization for New Value of Evanescent Cultural Communities: Developing Creative Tourism Services in Bangkok

Authors: Wuttigrai Ngamsirijit

Abstract:

Creative tourism is an ongoing development in many countries as an attempt to moving away from serial reproduction of culture and reviving the culture. Despite, in the destinations with diverse and potential cultural resources, creating new tourism services can be vague. This paper presents how tourism experiences are modularized and consolidated in order to form new creative tourism service offerings in evanescent cultural communities of Bangkok, Thailand. The benefits from data mining in accommodating value co-creation are discussed, and implication of experience modularization to national creative tourism policy is addressed.

Keywords: Co-creation, Creative tourism, New Service Design

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2406
835 MCOKE: Multi-Cluster Overlapping K-Means Extension Algorithm

Authors: Said Baadel, Fadi Thabtah, Joan Lu

Abstract:

Clustering involves the partitioning of n objects into k clusters. Many clustering algorithms use hard-partitioning techniques where each object is assigned to one cluster. In this paper we propose an overlapping algorithm MCOKE which allows objects to belong to one or more clusters. The algorithm is different from fuzzy clustering techniques because objects that overlap are assigned a membership value of 1 (one) as opposed to a fuzzy membership degree. The algorithm is also different from other overlapping algorithms that require a similarity threshold be defined a priori which can be difficult to determine by novice users.

Keywords: Data mining, k-means, MCOKE, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
834 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor

Authors: B. L. Gadiga

Abstract:

This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.

Keywords: Vegetation, NDVI, SPOT-vegetation, ecology, degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
833 Assessment of Energy Demand Considering Different Model Simulations in a Low Energy Demand House

Authors: M. Cañada-Soriano, C. Aparicio-Fernández, P. Sebastián Ferrer Gisbert, M. Val Field, J.-L. Vivancos-Bono

Abstract:

The lack of insulation along with the existence of air leakages constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, the Blower Door test can be used. It is a standardized procedure that determines the airtightness of a space by characterizing the rate of air leakages through the envelope surface. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place such as the infrared thermography. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house, refurbished under the Passive House standard, using the Blower Door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to estimate the energy demand in different scenarios. In this sense, a sequential implementation of three different energy improvement measures (insulation thickness, glazing type and infiltrations) have been analyzed.

Keywords: Airtightness, blower door, TRNSYS, infrared thermography, energy demand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223
832 Learning Block Memories with Metric Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Keywords: Hebbian learning, image recognition, small world, spatial information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
831 Reasons for Non-Applicability of Software Entropy Metrics for Bug Prediction in Android

Authors: Arvinder Kaur, Deepti Chopra

Abstract:

Software Entropy Metrics for bug prediction have been validated on various software systems by different researchers. In our previous research, we have validated that Software Entropy Metrics calculated for Mozilla subsystem’s predict the future bugs reasonably well. In this study, the Software Entropy metrics are calculated for a subsystem of Android and it is noticed that these metrics are not suitable for bug prediction. The results are compared with a subsystem of Mozilla and a comparison is made between the two software systems to determine the reasons why Software Entropy metrics are not applicable for Android.

Keywords: Android, bug prediction, mining software repositories, Software Entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
830 Long-term Flexural Behavior of HSC Beams

Authors: Andreea Muntean, Cornelia Măgureanu

Abstract:

This article presents the analysis of experimental values regarding cracking pattern, specific strains and deformability for reinforced high strength concrete beams. The beams have the concrete class C80/95 and a longitudinal reinforcement ratio of 2.01%, respectively 3.39%. The elements were subjected to flexure under static short-term and long-term loading. The experimental values are compared with calculation values using the design relationships according to Eurocode 2.

Keywords: High strength concrete, beams, flexure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
829 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer

Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu

Abstract:

Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power Field Effect Transistor (FET) was was small. The power efficiencies were 0.44-0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.

Keywords: E-textile, flexible coils, flexible antennas, Litz wire, wireless power transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193
828 Topology Preservation in SOM

Authors: E. Arsuaga Uriarte, F. Díaz Martín

Abstract:

The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.

Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3014
827 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are class balancing, data shuffling, and standardization, were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the sequential model and ReLU activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: Spectroscopy, soluble solid content, pineapple, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
826 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary

Abstract:

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368