Search results for: root finding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1038

Search results for: root finding

318 Low Power and Less Area Architecture for Integer Motion Estimation

Authors: C Hisham, K Komal, Amit K Mishra

Abstract:

Full search block matching algorithm is widely used for hardware implementation of motion estimators in video compression algorithms. In this paper we are proposing a new architecture, which consists of a 2D parallel processing unit and a 1D unit both working in parallel. The proposed architecture reduces both data access power and computational power which are the main causes of power consumption in integer motion estimation. It also completes the operations with nearly the same number of clock cycles as compared to a 2D systolic array architecture. In this work sum of absolute difference (SAD)-the most repeated operation in block matching, is calculated in two steps. The first step is to calculate the SAD for alternate rows by a 2D parallel unit. If the SAD calculated by the parallel unit is less than the stored minimum SAD, the SAD of the remaining rows is calculated by the 1D unit. Early termination, which stops avoidable computations has been achieved with the help of alternate rows method proposed in this paper and by finding a low initial SAD value based on motion vector prediction. Data reuse has been applied to the reference blocks in the same search area which significantly reduced the memory access.

Keywords: Sum of absolute difference, high speed DSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
317 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
316 Application of Nano Cutting Fluid under Minimum Quantity Lubrication (MQL) Technique to Improve Grinding of Ti – 6Al – 4V Alloy

Authors: Dinesh Setti, Sudarasan Ghosh, P. Venkateswara Rao

Abstract:

Minimum Quantity Lubrication (MQL) technique obtained a significant attention in machining processes to reduce environmental loads caused by usage of conventional cutting fluids. Recently nanofluids are finding an extensive application in the field of mechanical engineering because of their superior lubrication and heat dissipation characteristics. This paper investigates the use of a nanofluid under MQL mode to improve grinding characteristics of Ti-6Al-4V alloy. Taguchi-s experimental design technique has been used in the present investigation and a second order model has been established to predict grinding forces and surface roughness. Different concentrations of water based Al2O3 nanofluids were applied in the grinding operation through MQL setup developed in house and the results have been compared with those of conventional coolant and pure water. Experimental results showed that grinding forces reduced significantly when nano cutting fluid was used even at low concentration of the nano particles and surface finish has been found to improve with higher concentration of the nano particles.

Keywords: MQL, Nanofluid, Taguchi method, Ti-6Al-4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4029
315 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification

Authors: Morteza Talebi, Jianan Wang, Zhihua Qu

Abstract:

The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.

Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
314 Multiple Job Shop-Scheduling using Hybrid Heuristic Algorithm

Authors: R.A.Mahdavinejad

Abstract:

In this paper, multi-processors job shop scheduling problems are solved by a heuristic algorithm based on the hybrid of priority dispatching rules according to an ant colony optimization algorithm. The objective function is to minimize the makespan, i.e. total completion time, in which a simultanous presence of various kinds of ferons is allowed. By using the suitable hybrid of priority dispatching rules, the process of finding the best solution will be improved. Ant colony optimization algorithm, not only promote the ability of this proposed algorithm, but also decreases the total working time because of decreasing in setup times and modifying the working production line. Thus, the similar work has the same production lines. Other advantage of this algorithm is that the similar machines (not the same) can be considered. So, these machines are able to process a job with different processing and setup times. According to this capability and from this algorithm evaluation point of view, a number of test problems are solved and the associated results are analyzed. The results show a significant decrease in throughput time. It also shows that, this algorithm is able to recognize the bottleneck machine and to schedule jobs in an efficient way.

Keywords: Job shops scheduling, Priority dispatching rules, Makespan, Hybrid heuristic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
313 A New Hybrid Optimization Method for Optimum Distribution Capacitor Planning

Authors: A. R. Seifi

Abstract:

This work presents a new algorithm based on a combination of fuzzy (FUZ), Dynamic Programming (DP), and Genetic Algorithm (GA) approach for capacitor allocation in distribution feeders. The problem formulation considers two distinct objectives related to total cost of power loss and total cost of capacitors including the purchase and installation costs. The novel formulation is a multi-objective and non-differentiable optimization problem. The proposed method of this article uses fuzzy reasoning for sitting of capacitors in radial distribution feeders, DP for sizing and finally GA for finding the optimum shape of membership functions which are used in fuzzy reasoning stage. The proposed method has been implemented in a software package and its effectiveness has been verified through a 9-bus radial distribution feeder for the sake of conclusions supports. A comparison has been done among the proposed method of this paper and similar methods in other research works that shows the effectiveness of the proposed method of this paper for solving optimum capacitor planning problem.

Keywords: Capacitor planning, Fuzzy logic method, Genetic Algorithm, Dynamic programming, Radial Distribution feeder

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1610
312 Leveraging Quality Metrics in Voting Model Based Thread Retrieval

Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim

Abstract:

Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.

Keywords: Content quality, Forum search, Thread retrieval, Voting techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
311 Optimal Economic Restructuring Aimed at an Increase in GDP Constrained by a Decrease in Energy Consumption and CO2 Emissions

Authors: Alexander Y. Vaninsky

Abstract:

The objective of this paper is finding the way of economic restructuring - that is, change in the shares of sectoral gross outputs - resulting in the maximum possible increase in the gross domestic product (GDP) combined with decreases in energy consumption and CO2 emissions. It uses an input-output model for the GDP and factorial models for the energy consumption and CO2 emissions to determine the projection of the gradient of GDP, and the antigradients of the energy consumption and CO2 emissions, respectively, on a subspace formed by the structure-related variables. Since the gradient (antigradient) provides a direction of the steepest increase (decrease) of the objective function, and their projections retain this property for the functions' limitation to the subspace, each of the three directional vectors solves a particular problem of optimal structural change. In the next step, a type of factor analysis is applied to find a convex combination of the projected gradient and antigradients having maximal possible positive correlation with each of the three. This convex combination provides the desired direction of the structural change. The national economy of the United States is used as an example of applications.

Keywords: Economic restructuring, Input-Output analysis, Divisia index, Factorial decomposition, E3 models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
310 A Sociological Study of Rural Women Attitudes toward Education, Health and Work outside Home in Beheira Governorate, Egypt

Authors: A. A. Betah

Abstract:

This research was performed to evaluate the attitudes of rural women towards education, health and work outside the home. The study was based on a random sample of 147 rural women, Kafr-Rahmaniyah village was chosen for the study because its life expectancy at birth for females, education and percentage of females in the labor force, were the highest in the district. The study data were collected from rural female respondents, using a face-to-face questionnaire. In addition, the study estimated several factors like age, main occupation, family size, monthly household income, geographic cosmopolites, and degree of social participation for rural women respondents. Using Statistical Package for the Social Sciences (SPSS), data were analyzed by non-parametric statistical methods. The main finding in this study was a significant relationship between each of the previous variables and each of rural women’s attitudes toward education, health, and work outside home. The study concluded with some recommendations. The most important element is ensuring attention to rural women’s needs, requirements and rights via raising their health awareness, education and their contributions in their society.

Keywords: Attitudes, education, health, rural women, work outside the home.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
309 An Efficient Algorithm for Delay Delay-variation Bounded Least Cost Multicast Routing

Authors: Manas Ranjan Kabat, Manoj Kumar Patel, Chita Ranjan Tripathy

Abstract:

Many multimedia communication applications require a source to transmit messages to multiple destinations subject to quality of service (QoS) delay constraint. To support delay constrained multicast communications, computer networks need to guarantee an upper bound end-to-end delay from the source node to each of the destination nodes. This is known as multicast delay problem. On the other hand, if the same message fails to arrive at each destination node at the same time, there may arise inconsistency and unfairness problem among users. This is related to multicast delayvariation problem. The problem to find a minimum cost multicast tree with delay and delay-variation constraints has been proven to be NP-Complete. In this paper, we propose an efficient heuristic algorithm, namely, Economic Delay and Delay-Variation Bounded Multicast (EDVBM) algorithm, based on a novel heuristic function, to construct an economic delay and delay-variation bounded multicast tree. A noteworthy feature of this algorithm is that it has very high probability of finding the optimal solution in polynomial time with low computational complexity.

Keywords: EDVBM, Heuristic algorithm, Multicast tree, QoS routing, Shortest path.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
308 Binary Decision Diagrams: An Improved Variable Ordering using Graph Representation of Boolean Functions

Authors: P.W. C. Prasad, A. Assi, A. Harb, V.C. Prasad

Abstract:

This paper presents an improved variable ordering method to obtain the minimum number of nodes in Reduced Ordered Binary Decision Diagrams (ROBDD). The proposed method uses the graph topology to find the best variable ordering. Therefore the input Boolean function is converted to a unidirectional graph. Three levels of graph parameters are used to increase the probability of having a good variable ordering. The initial level uses the total number of nodes (NN) in all the paths, the total number of paths (NP) and the maximum number of nodes among all paths (MNNAP). The second and third levels use two extra parameters: The shortest path among two variables (SP) and the sum of shortest path from one variable to all the other variables (SSP). A permutation of the graph parameters is performed at each level for each variable order and the number of nodes is recorded. Experimental results are promising; the proposed method is found to be more effective in finding the variable ordering for the majority of benchmark circuits.

Keywords: Binary decision diagrams, graph representation, Boolean functions representation, variable ordering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
307 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India

Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab

Abstract:

Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.

Keywords: Climate change, coastal vulnerability index, global warming, sea level rise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565
306 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: Predictive analysis, big data, predictive analysis algorithms. CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
305 An Efficient Algorithm for Computing all Program Forward Static Slices

Authors: Jehad Al Dallal

Abstract:

Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program backward slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. The existing algorithms for computing program slices are introduced to compute a slice at a program point. In these algorithms, the program, or the model that represents the program, is traversed completely or partially once. To compute more than one slice, the same algorithm is applied for every point of interest in the program. Thus, the same program, or program representation, is traversed several times. In this paper, an algorithm is introduced to compute all forward static slices of a computer program by traversing the program representation graph once. Therefore, the introduced algorithm is useful for software engineering applications that require computing program slices at different points of a program. The program representation graph used in this paper is called Program Dependence Graph (PDG).

Keywords: Program slicing, static slicing, forward slicing, program dependence graph (PDG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1465
304 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
303 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision-making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a fuzzy linguistic term. The finding suggests that fuzzy linguistic evaluation is practical and meaningful in knowledge-based system development purpose. 

Keywords: Case-based reasoning, decision-support system, fuzzy linguistic term, rule-based reasoning, system evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
302 Allelopathic Effects of Sisymbrium irio L. and Descurainia sophia (L.) Schur on the Germination of Wheat (Triticum aestivum L.)

Authors: Sh. Edrisi, A. Farahbakhsh

Abstract:

An experiment was conducted under controlled conditions to study the effect of water extract of leaves, shoots and roots of either Sisymbrium irio L. =SISIR and/or Descurainia sophia (L.) Schur =DESSO on the germination and primary growth of wheat. A split-split plot experiment in CRD with three replications was used. The main plots were the type of weed: i.e. SISIR and DESSO and the sub-plots were type of organ: i.e. leaf, stem and root and, the sub-sub plots were concentration of the water extract of each organ of the weeds: i.e. 0, 2, 4 and 8 % w/v. The plant materials were cut in 2-3 cm pieces and then were ground in a blender. The crushed materials were weighed according to experimental protocol and the final volume was reached to 100 ml in distilled water in dark bottles. All bottles were put on a shaker for 24 hours. The solutions were filtered by muslin cloth. Whatman paper, 9 cm in diameter, were put in petri dishes and twenty seeds of wheat were put on it and 5 ml distilled water or water extract of weeds were added to each petri dish. All petri dishes were put in constant temperature of 15 0C incubator. The results showed that the SISIR water extract had a greater inhibitory effects on germination and primary growth of wheat than those of DESSO water extract. The water extracts of the leaves of both weeds had the greatest inhibitory effects on germination and primary growth of wheat, compared to those of stems and roots. Increasing the concentration of water extract of leaves, stems and roots of both weeds up to 8 % caused the greatest inhibitory effects to wheat and reduced the germination rate and primary growth of it linearly.

Keywords: Allelopathy, DESSO, SISIR, wheat

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
301 Impact of Increasing Distributed Solar PV Systems on Distribution Networks in South Africa

Authors: Aradhna Pandarum

Abstract:

South Africa is experiencing an exponential growth of distributed solar PV installations. This is due to various factors with the predominant one being increasing electricity tariffs along with decreasing installation costs, resulting in attractive business cases to some end-users. Despite there being a variety of economic and environmental advantages associated with the installation of PV, their potential impact on distribution grids has yet to be thoroughly investigated. This is especially true since the locations of these units cannot be controlled by Network Service Providers (NSPs) and their output power is stochastic and non-dispatchable. This report details two case studies that were completed to determine the possible voltage and technical losses impact of increasing PV penetration in the Northern Cape of South Africa. Some major impacts considered for the simulations were ramping of PV generation due to intermittency caused by moving clouds, the size and overall hosting capacity and the location of the systems. The main finding is that the technical impact is different on a constrained feeder vs a non-constrained feeder. The acceptable PV penetration level is much lower for a constrained feeder than a non-constrained feeder, depending on where the systems are located.

Keywords: Medium voltage networks, power system losses, power system voltage, solar photovoltaic, PV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 553
300 KM Practices in Service SMEs

Authors: K. Cormican, G. Coppola, S. Farina

Abstract:

Knowledge management is a critical component of competitive success in service organizations. Knowledge management centers on creating new knowledge and utilizing existing knowledge. While utilizing existing knowledge relates to input and control and can lead to a reduction in costs; creating new knowledge relates to output and growth and can lead to an increase in revenue. Therefore managers must ensure that they can successfully optimize the knowledge and talent in their organizations. To do this they and must try to develop an environment that promotes the generation, acquisition, transfer and use of valuable knowledge in creative ways. However knowledge management is complex and diverse. Research suggests that organizations in general and SMEs in particular are finding it difficult to implement successful knowledge management initiatives. Our research attempts to understand whether organizations are adopting best practice initiatives in their organizations. This paper presents findings from an exploratory study of 139 SMEs operating in the tourism sector across Europe. The goals of the survey is to assess the level of awareness of knowledge and talent management strategies and methodologies and to determine whether the responding companies implement best practice knowledge management initiatives in their organizations Analysis of the findings from the study are presented and discussed.

Keywords: service sector, small enterprise, success factors, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
299 A New Method in Detection of Ceramic Tiles Color Defects Using Genetic C-Means Algorithm

Authors: Mahkameh S. Mostafavi

Abstract:

In this paper an algorithm is used to detect the color defects of ceramic tiles. First the image of a normal tile is clustered using GCMA; Genetic C-means Clustering Algorithm; those results in best cluster centers. C-means is a common clustering algorithm which optimizes an objective function, based on a measure between data points and the cluster centers in the data space. Here the objective function describes the mean square error. After finding the best centers, each pixel of the image is assigned to the cluster with closest cluster center. Then, the maximum errors of clusters are computed. For each cluster, max error is the maximum distance between its center and all the pixels which belong to it. After computing errors all the pixels of defected tile image are clustered based on the centers obtained from normal tile image in previous stage. Pixels which their distance from their cluster center is more than the maximum error of that cluster are considered as defected pixels.

Keywords: C-Means algorithm, color spaces, Genetic Algorithm, image clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
298 Using Facebook as an Alternative Learning Tool in Malaysian Higher Learning Institutions: A Structural Equation Modeling Approach

Authors: Ahasanul Haque, Abdullah Sarwar, Khaliq Ahmad

Abstract:

Networking is important among students to achieve better understanding. Social networking plays an important role in the education. Realizing its huge potential, various organizations, including institutions of higher learning have moved to the area of social networks to interact with their students especially through Facebook. Therefore, measuring the effectiveness of Facebook as a learning tool has become an area of interest to academicians and researchers. Therefore, this study tried to integrate and propose new theoretical and empirical evidences by linking the western idea of adopting Facebook as an alternative learning platform from a Malaysian perspective. This study, thus, aimed to fill a gap by being among the pioneering research that tries to study the effectiveness of adopting Facebook as a learning platform across other cultural settings, namely Malaysia. Structural equation modeling was employed for data analysis and hypothesis testing. This study finding has provided some insights that would likely affect students’ awareness towards using Facebook as an alternative learning platform in the Malaysian higher learning institutions. At the end, future direction is proposed.

Keywords: Learning Management Tool, Social Networking, Education, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
297 Nationalist Approach to the Music Culture in Early Republican Period in Turkey

Authors: Hilmi Yazici

Abstract:

The more homogenized population taken over by the Republic immediately after the Ottoman was being canalized towards the goal of national identity and the historical and cultural structure of the nation was being readdressed and redefined. Modernization and Westernization history of the new Turkey, which started with Ottoman reforms and took its final form with the Kemalist nation-state, politically resulted in transformation from a multinational empire to a “nation-state” and adopted reaching to the level of Western civilizations as a sociology ideal. This objective of change will be achieved, on the one hand, by finding the Turkish culture which was preserved only by the society and by instilling Western civilization to national culture, on the other hand.  In line with this, it is seen that in musical considerations while Turkish folk music was accepted and adopted as an indispensible part of Turkish identity, Turkish classical music was refused on the ground that it was not a part of Turkish identity. Again in this period, it is seen that with the notion of cultural reform, which is a part of “nation building”, the desire to create a national music to be performed with Western techniques brought along deliberate interventions to folk music.

Keywords: Folk song, Nationalism, National music, nation-state, Turkish music.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
296 Genetic Algorithm Parameters Optimization for Bi-Criteria Multiprocessor Task Scheduling Using Design of Experiments

Authors: Sunita Dhingra, Satinder Bal Gupta, Ranjit Biswas

Abstract:

Multiprocessor task scheduling is a NP-hard problem and Genetic Algorithm (GA) has been revealed as an excellent technique for finding an optimal solution. In the past, several methods have been considered for the solution of this problem based on GAs. But, all these methods consider single criteria and in the present work, minimization of the bi-criteria multiprocessor task scheduling problem has been considered which includes weighted sum of makespan & total completion time. Efficiency and effectiveness of genetic algorithm can be achieved by optimization of its different parameters such as crossover, mutation, crossover probability, selection function etc. The effects of GA parameters on minimization of bi-criteria fitness function and subsequent setting of parameters have been accomplished by central composite design (CCD) approach of response surface methodology (RSM) of Design of Experiments. The experiments have been performed with different levels of GA parameters and analysis of variance has been performed for significant parameters for minimisation of makespan and total completion time simultaneously.

Keywords: Multiprocessor task scheduling, Design of experiments, Genetic Algorithm, Makespan, Total completion time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
295 Experimental Modal Analysis of Reinforced Concrete Square Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.

Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
294 Impact of Music on Brain Function during Mental Task using Electroencephalography

Authors: B. Geethanjali, K. Adalarasu, R. Rajsekaran

Abstract:

Music has a great effect on human body and mind; it can have a positive effect on hormone system. Objective of this study is to analysis the effect of music (carnatic, hard rock and jazz) on brain activity during mental work load using electroencephalography (EEG). Eight healthy subjects without special musical education participated in the study. EEG signals were acquired at frontal (Fz), parietal (Pz) and central (Cz) lobes of brain while listening to music at three experimental condition (rest, music without mental task and music with mental task). Spectral powers features were extracted at alpha, theta and beta brain rhythms. While listening to jazz music, the alpha and theta powers were significantly (p < 0.05) high for rest as compared to music with and without mental task in Cz. While listening to Carnatic music, the beta power was significantly (p < 0.05) high for with mental task as compared to rest and music without mental task at Cz and Fz location. This finding corroborates that attention based activities are enhanced while listening to jazz and carnatic as compare to Hard rock during mental task.

Keywords: Music, Brain Function, Electroencephalography (EEG), Mental Task, Features extraction parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4505
293 Risks and Mitigation Measures in Build-Operate-Transfer Projects

Authors: Syed Kamarul Bakri Syed Ahmad Bokharey, Kalaikumar Vallyutham, Narayanan Sambu Potty, Nabilah Abu Bakar

Abstract:

Infrastructure investments are important in developing countries, it will not only help to foster the economic growth of a nation, but it will also act as a platform in which new forms of partnership and collaboration can be developed mainly in East Asian countries. Since the last two decades, many infrastructure projects had been completed through build-operate-transfer (BOT) type of procurement. The developments of BOT have attracted participation of local and foreign private sector investor to secure funding and to deliver projects on time, within the budget and to the required specifications. Private sectors are preferred by the government in East Asia to participate in BOT projects due to lack of public funding. The finding has resulted that the private sector or promoter of the BOT projects is exposed to multiple risks which have been discussed in this paper. Effective risk management methods and good managerial skills are required in ensuring the success of the project. The review indicated that mitigation measures should be employed by the promoter throughout the concession period and support from the host government is also required in ensuring the success of the BOT project.

Keywords: BOT project, risks management, concessionaire, consortium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8205
292 Green Synthesized Iron Oxide Nanoparticles: A Nano-Nutrient for the Growth and Enhancement of Flax (Linum usitatissimum L.) Plant

Authors: G. Karunakaran, M. Jagathambal, N. Van Minh, E. Kolesnikov, A. Gusev, O. V. Zakharova, E. V. Scripnikova, E. D. Vishnyakova, D. Kuznetsov

Abstract:

Iron oxide nanoparticles (Fe2O3NPs) are widely used in different applications due to its ecofriendly nature and biocompatibility. Hence, in this investigation, biosynthesized Fe2O3NPs influence on flax (Linum usitatissimum L.) plant was examined. The biosynthesized nanoparticles were found to be cubic phase which is confirmed by XRD analysis. FTIR analysis confirmed the presence of functional groups corresponding to the iron oxide nanoparticle. The elemental analysis also confirmed that the obtained nanoparticle is iron oxide nanoparticle. The scanning electron microscopy and the transmission electron microscopy confirm that the average particle size was around 56 nm. The effect of Fe2O3NPs on seed germination followed by biochemical analysis was carried out using standard methods. The results obtained after four days and 11 days of seed vigor studies showed that the seedling length (cm), average number of seedling with leaves, increase in root length (cm) was found to be enhanced on treatment with iron oxide nanoparticles when compared to control. A positive correlation was noticed with the dose of the nanoparticle and plant growth, which may be due to changes in metabolic activity. Hence, to evaluate the change in metabolic activity, peroxidase and catalase activities were estimated. It was clear from the observation that higher concentration of iron oxide nanoparticles (Fe2O3NPs 1000 mg/L) has enhanced peroxidase and catalase activities and in turn plant growth. Thus, this study clearly showed that biosynthesized iron oxide nanoparticles will be an effective nano-nutrient for agriculture applications.

Keywords: Catalase, fertilizer, iron oxide nanoparticles, Linum usitatissimum L., nano-nutrient, peroxidase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
291 Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry

Authors: R. Chanajaree, D. Luanwiset, K. Pongpratea

Abstract:

Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY).

Keywords: Dye removal, binding free energies, quantum calculation, docking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 719
290 Evaluation of Graph-based Analysis for Forest Fire Detections

Authors: Young Gi Byun, Yong Huh, Kiyun Yu, Yong Il Kim

Abstract:

Spatial outliers in remotely sensed imageries represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA-s AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. This point is what distinguishes our approach from the traditional fire detection methods. In this paper, we propose a graph-based forest fire detection algorithm which is based on spatial outlier detection methods, and test the proposed algorithm to evaluate its applicability. For this the ordinary scatter plot and Moran-s scatter plot were used. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.

Keywords: Spatial Outlier Detection, MODIS, Forest Fire

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
289 Impact of Fiscal Policy on Economic Growth under the Contributions of Level of External Debt in Developing Countries

Authors: Zohreh Bang Tavakoli, Shuktika Chatterjee

Abstract:

This study investigates the fiscal policy impact on countries’ economic growth in developing countries with a different external debt level. The fiscal policy effectiveness has been re-emphasized in the global financial crisis of 2008 with the external debt as its new contemporary driver. Different theories have proposed the economic consequence of fiscal policy, specifically for developing countries. However, fiscal policy literature is lacking research regarding the fiscal policy’s effectiveness with the external debt’s contributions through comprehensive study. Also, high levels of external debt will influence economic growth. Through foreign resources and channel of investment in which high level of debt decreases the amount of foreign investment in the developing countries. The finding of this study suggests that only countries with a low external debt level and appropriate fiscal policies and good quality institutions can gain the proper quantity and quality of foreign investors in which will help the economic growth. For this, this research is examining the impact of fiscal policy on developing countries' economic growth in the situation of different external debt levels.

Keywords: fiscal policy, external debt, gross domestic product, developing countries

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483