Search results for: extreme learning machine
2339 Self-Assembling Hypernetworks for Cognitive Learning of Linguistic Memory
Authors: Byoung-Tak Zhang, Chan-Hoon Park
Abstract:
Hypernetworks are a generalized graph structure representing higher-order interactions between variables. We present a method for self-organizing hypernetworks to learn an associative memory of sentences and to recall the sentences from this memory. This learning method is inspired by the “mental chemistry" model of cognition and the “molecular self-assembly" technology in biochemistry. Simulation experiments are performed on a corpus of natural-language dialogues of approximately 300K sentences collected from TV drama captions. We report on the sentence completion performance as a function of the order of word-interaction and the size of the learning corpus, and discuss the plausibility of this architecture as a cognitive model of language learning and memory.Keywords: Linguistic recall memory, sentence completion task, self-organizing hypernetworks, cognitive learning and memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14972338 Toward a Model for Knowledge Development in Virtual Environments: Strategies for Student Ownership
Authors: N.B. Adams
Abstract:
This article discusses the concept of student ownership of knowledge and seeks to determine how to move students from knowledge acquisition to knowledge application and ultimately to knowledge generation in a virtual setting. Instructional strategies for fostering student engagement in a virtual environment are critical to the learner-s strategic ownership of the knowledge. A number of relevant theories that focus on learning, affect, needs and adult concerns are presented to provide a basis for exploring the transfer of knowledge from teacher to learner. A model under development is presented that combines the dimensions of knowledge approach, the teacher-student relationship with regards to knowledge authority and teaching approach to demonstrate the recursive and scaffolded design for creation of virtual learning environments.
Keywords: Virtual learning environments, learning theory, teaching model, online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18682337 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632336 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16722335 Challenges for Interface Designers in Designing Sensor Dashboards in the Context of Industry 4.0
Authors: Naveen Kumar, Shyambihari Prajapati
Abstract:
Industry 4.0 is the fourth industrial revolution that focuses on interconnectivity of machine to machine, human to machine and human to human via Internet of Things (IoT). Technologies of industry 4.0 facilitate communication between human and machine through IoT and forms Cyber-Physical Production System (CPPS). In CPPS, multiple shop floors sensor data are connected through IoT and displayed through sensor dashboard to the operator. These sensor dashboards have enormous amount of information to be presented which becomes complex for operators to perform monitoring, controlling and interpretation tasks. Designing handheld sensor dashboards for supervision task will become a challenge for the interface designers. This paper reports emerging technologies of industry 4.0, changing context of increasing information complexity in consecutive industrial revolutions and upcoming design challenges for interface designers in context of Industry 4.0. Authors conclude that information complexity of sensor dashboards design has increased with consecutive industrial revolutions and designs of sensor dashboard causes cognitive load on users. Designing such complex dashboards interfaces in Industry 4.0 context will become main challenges for the interface designers.
Keywords: Industry 4.0, sensor dashboard design, Cyber-physical production system, Interface designer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6702334 Automatic Inspection of Percussion Caps by Means of Combined 2D and 3D Machine Vision Techniques
Authors: A. Tellaeche, R. Arana, I.Maurtua
Abstract:
The exhaustive quality control is becoming more and more important when commercializing competitive products in the world's globalized market. Taken this affirmation as an undeniable truth, it becomes critical in certain sector markets that need to offer the highest restrictions in quality terms. One of these examples is the percussion cap mass production, a critical element assembled in firearm ammunition. These elements, built in great quantities at a very high speed, must achieve a minimum tolerance deviation in their fabrication, due to their vital importance in firing the piece of ammunition where they are built in. This paper outlines a machine vision development for the 100% inspection of percussion caps obtaining data from 2D and 3D simultaneous images. The acquisition speed and precision of these images from a metallic reflective piece as a percussion cap, the accuracy of the measures taken from these images and the multiple fabrication errors detected make the main findings of this work.Keywords: critical tolerance, high speed decision makingsimultaneous 2D/3D machine vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15372333 The Efficacy of Technology in Enhancing the Development and Learning of Children (0 – 5 Years)
Authors: Adesina, Olusola Joseph
Abstract:
The use of Technological tools in the classroom setting has drawn the interest of researchers all over the world in the recent time. Technology has been identified in the recent time as potentials tools to aid learning especially during early childhood stage. The main objective of this is to assist the upcoming younger generations to acquire necessary skills for cognitive development which later enhances effective teaching learning process. The integration of Technology in early childhood requires a careful selection of devices that will both assist the children and the teachers or care givers. This paper therefore, examines some selected literature evidences and highlighted the efficacy of various technologies tools in enhancing the development and learning of children (0 – 5 years). Conclusion and recommendations were also drawn in this paper.
Keywords: Development, Efficacy, Learning, Technological Device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15242332 Laban Movement Analysis Using Kinect
Authors: Ran Bernstein, Tal Shafir, Rachelle Tsachor, Karen Studd, Assaf Schuster
Abstract:
Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.Keywords: Laban Movement Analysis, Kinect, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28332331 Smartphone-Based Human Activity Recognition by Machine Learning Methods
Authors: Yanting Cao, Kazumitsu Nawata
Abstract:
As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained.
Keywords: smart sensors, human activity recognition, artificial intelligence, SVM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6372330 A Visual Educational Modeling Language to Help Teachers in Learning Scenario Design
Authors: A. Retbi, M. Khalidi Idrissi, S. Bennani
Abstract:
The success of an e-learning system is highly dependent on the quality of its educational content and how effective, complete, and simple the design tool can be for teachers. Educational modeling languages (EMLs) are proposed as design languages intended to teachers for modeling diverse teaching-learning experiences, independently of the pedagogical approach and in different contexts. However, most existing EMLs are criticized for being too abstract and too complex to be understood and manipulated by teachers. In this paper, we present a visual EML that simplifies the process of designing learning scenarios for teachers with no programming background. Based on the conceptual framework of the activity theory, our resulting visual EML focuses on using Domainspecific modeling techniques to provide a pedagogical level of abstraction in the design process.Keywords: Educational modeling language, Domain Specific Modeling, authoring systems, learning scenario.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23182329 A Validity and Reliability Study of Grasha- Riechmann Student Learning Style Scale
Authors: Yaşar Baykul, Musa Gürsel, Hacı Sulak, Erhan Ertekin, Ersen Yazıcı, Osman Dülger, Yasin Aslan, Kağan Büyükkarcı
Abstract:
The reliability of the tools developed to learn the learning styles is essential to find out students- learning styles trustworthily. For this purpose, the psychometric features of Grasha- Riechman Student Learning Style Inventory developed by Grasha was studied to contribute to this field. The study was carried out on 6th, 7th, and 8th graders of 10 primary education schools in Konya. The inventory was applied twice with an interval of one month, and according to the data of this application, the reliability coefficient numbers of the 6 sub-dimensions pointed in the theory of the inventory was found to be medium. Besides, it was found that the inventory does not have a structure with 6 factors for both Mathematics and English courses as represented in the theory.Keywords: Learning styles, Grasha-Riechmann, reliability, validity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65572328 Analysis on Precipitation Variation Patterns of Chenzhou City
Authors: Li Wu
Abstract:
By using linear regression methodology to analyze the data of daily precipitation from 1961-2012, this paper studied the variation tendency of precipitation in Chenzhou. The outcome showed: (1) The annual precipitation was decreasing for 52 years and the difference of precipitation variation tendency among four seasons was remarkable. The precipitation of spring and autumn showed more remarkable decrease than of summer; but the precipitation of winter significantly increased. (2) The annual precipitation frequency tended to lower, which was consistent with the tendency of yearly variation. The seasonal precipitation frequency was greatly different, namely, precipitation frequency in spring and autumn decreased, co-occurring with the phenomenon of mutation; but the winter precipitation frequency increased notably. (3) The precipitation intensity displayed a tendency of increase, including spring, autumn and winter; among them, winter had the most obvious tendency to increase, and autumn had the most yearly variation. Summer was the only season with a tendency of decreasing in precipitation intensity. (4) Annual extreme precipitation tended to reduce, spring, summer and autumn are all included; whereas, winter extreme precipitation tended to increase at the rate of 0.1d/10a. (5) The daily maximum precipitation intensity increased slightly and it varied greatly.
Keywords: Chenzhou, precipitation variation, precipitation frequency, precipitation intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8652327 Determining the Gender of Korean Names for Pronoun Generation
Authors: Seong-Bae Park, Hee-Geun Yoon
Abstract:
It is an important task in Korean-English machine translation to classify the gender of names correctly. When a sentence is composed of two or more clauses and only one subject is given as a proper noun, it is important to find the gender of the proper noun for correct translation of the sentence. This is because a singular pronoun has a gender in English while it does not in Korean. Thus, in Korean-English machine translation, the gender of a proper noun should be determined. More generally, this task can be expanded into the classification of the general Korean names. This paper proposes a statistical method for this problem. By considering a name as just a sequence of syllables, it is possible to get a statistics for each name from a collection of names. An evaluation of the proposed method yields the improvement in accuracy over the simple looking-up of the collection. While the accuracy of the looking-up method is 64.11%, that of the proposed method is 81.49%. This implies that the proposed method is more plausible for the gender classification of the Korean names.Keywords: machine translation, natural language processing, gender of proper nouns, statistical method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23682326 Investigation of Learning Challenges in Building Measurement Unit
Authors: Argaw T. Gurmu, Muhammad N. Mahmood
Abstract:
The objective of this research is to identify the architecture and construction management students’ learning challenges of the building measurement. This research used the survey data obtained collected from the students who completed the building measurement unit. NVivo qualitative data analysis software was used to identify relevant themes. The analysis of the qualitative data revealed the major learning difficulties such as inadequacy of practice questions for the examination, inability to work as a team, lack of detailed understanding of the prerequisite units, insufficiency of the time allocated for tutorials and incompatibility of lecture and tutorial schedules. The output of this research can be used as a basis for improving the teaching and learning activities in construction measurement units.
Keywords: Building measurement, construction management, learning challenges, evaluate survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11042325 Educators’ Adherence to Learning Theories and Their Perceptions on the Advantages and Disadvantages of e-Learning
Authors: Samson T. Obafemi, Seraphin D. Eyono Obono
Abstract:
Information and Communication Technologies (ICTs) are pervasive nowadays, including in education where they are expected to improve the performance of learners. However, the hope placed in ICTs to find viable solutions to the problem of poor academic performance in schools in the developing world has not yet yielded the expected benefits. This problem serves as a motivation to this study whose aim is to examine the perceptions of educators on the advantages and disadvantages of e-learning. This aim will be subdivided into two types of research objectives. Objectives on the identification and design of theories and models will be achieved using content analysis and literature review. However, the objective on the empirical testing of such theories and models will be achieved through the survey of educators from different schools in the Pinetown District of the South African Kwazulu-Natal province. SPSS is used to quantitatively analyse the data collected by the questionnaire of this survey using descriptive statistics and Pearson correlations after assessing the validity and the reliability of the data. The main hypothesis driving this study is that there is a relationship between the demographics of educators’ and their adherence to learning theories on one side, and their perceptions on the advantages and disadvantages of e-learning on the other side, as argued by existing research; but this research views these learning theories under three perspectives: educators’ adherence to self-regulated learning, to constructivism, and to progressivism. This hypothesis was fully confirmed by the empirical study except for the demographic factor where teachers’ level of education was found to be the only demographic factor affecting the perceptions of educators on the advantages and disadvantages of e-learning.
Keywords: Academic performance, e-learning, Learning theories, Teaching and Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26342324 Neural Networks Learning Improvement using the K-Means Clustering Algorithm to Detect Network Intrusions
Authors: K. M. Faraoun, A. Boukelif
Abstract:
In the present work, we propose a new technique to enhance the learning capabilities and reduce the computation intensity of a competitive learning multi-layered neural network using the K-means clustering algorithm. The proposed model use multi-layered network architecture with a back propagation learning mechanism. The K-means algorithm is first applied to the training dataset to reduce the amount of samples to be presented to the neural network, by automatically selecting an optimal set of samples. The obtained results demonstrate that the proposed technique performs exceptionally in terms of both accuracy and computation time when applied to the KDD99 dataset compared to a standard learning schema that use the full dataset.Keywords: Neural networks, Intrusion detection, learningenhancement, K-means clustering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36112323 Comparison between XGBoost, LightGBM and CatBoost Using a Home Credit Dataset
Authors: Essam Al Daoud
Abstract:
Gradient boosting methods have been proven to be a very important strategy. Many successful machine learning solutions were developed using the XGBoost and its derivatives. The aim of this study is to investigate and compare the efficiency of three gradient methods. Home credit dataset is used in this work which contains 219 features and 356251 records. However, new features are generated and several techniques are used to rank and select the best features. The implementation indicates that the LightGBM is faster and more accurate than CatBoost and XGBoost using variant number of features and records.
Keywords: Gradient boosting, XGBoost, LightGBM, CatBoost, home credit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 94622322 Deep Learning and Virtual Environment
Authors: Danielle Morin, Jennifer D.E.Thomas, Raafat G. Saade
Abstract:
While computers are known to facilitate lower levels of learning, such as rote memorization of facts, measurable through electronically administered and graded multiple-choice questions, yes/no, and true/false answers, the imparting and measurement of higher-level cognitive skills is more vexing. These require more open-ended delivery and answers, and may be more problematic in an entirely virtual environment, notwithstanding the advances in technologies such as wikis, blogs, discussion boards, etc. As with the integration of all technology, merit is based more on the instructional design of the course than on the technology employed in, and of, itself. With this in mind, this study examined the perceptions of online students in an introductory Computer Information Systems course regarding the fostering of various higher-order thinking and team-building skills as a result of the activities, resources and technologies (ART) used in the course.
Keywords: Critical thinking, deep learning, distance learning, elearning, online learning, virtual environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22702321 Face Recognition with PCA and KPCA using Elman Neural Network and SVM
Authors: Hossein Esbati, Jalil Shirazi
Abstract:
In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19302320 Students’ Views on Mathematics Learning: A Cross-Sectional Survey of Senior Secondary Schools Students in Katsina State of Nigeria
Authors: Fahad Suleiman
Abstract:
The aim of this paper is to study students’ view on mathematics learning in Katsina State Senior Secondary Schools of Nigeria, such as their conceptions of mathematics, attitudes toward mathematics learning, etc. A questionnaire was administered to a random sample of 1,225 senior secondary two (SS II) students of Katsina State in Nigeria. The data collected showed a clear picture of the hurdles that affect the teaching and learning of mathematics in our schools. Problems such as logistics and operational which include shortage of mathematics teachers, non–availability of a mathematics laboratory, etc. were identified. It also depicted the substantial trends of changing views and attitudes toward mathematics across secondary schools. Students’ responses to the conception of mathematics were consistent and they demonstrated some specific characteristics of their views in learning mathematics. This survey has provided useful information regarding students’ needs and aspirations in mathematics learning for curriculum planners and frontline teachers for future curriculum reform and implementation.Keywords: Attitude, education, mathematics, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10652319 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: Big data, k-NN, machine learning, traffic speed prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13762318 Evaluating the Role of Multisensory Elements in Foreign Language Acquisition
Authors: Sari Myréen
Abstract:
The aim of this study was to evaluate the role of multisensory elements in enhancing and facilitating foreign language acquisition among adult students in a language classroom. The use of multisensory elements enables the creation of a student-centered classroom, where the focus is on individual learner’s language learning process, perceptions and motivation. Multisensory language learning is a pedagogical approach where the language learner uses all the senses more effectively than in a traditional in-class environment. Language learning is facilitated due to multisensory stimuli which increase the number of cognitive connections in the learner and take into consideration different types of learners. A living lab called Multisensory Space creates a relaxed and receptive state in the learners through various multisensory stimuli, and thus promotes their natural foreign language acquisition. Qualitative and quantitative data were collected in two questionnaire inquiries among the Finnish students of a higher education institute at the end of their basic French courses in December 2014 and 2016. The inquiries discussed the effects of multisensory elements on the students’ motivation to study French as well as their learning outcomes. The results show that the French classes in the Multisensory Space provide the students with an encouraging and pleasant learning environment, which has a positive impact on their motivation to study the foreign language as well as their language learning outcomes.
Keywords: Foreign language acquisition, foreign language learning, higher education, multisensory learning, pedagogical approach, transcultural learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13792317 A Meta-Analytic Path Analysis of e-Learning Acceptance Model
Authors: David W.S. Tai, Ren-Cheng Zhang, Sheng-Hung Chang, Chin-Pin Chen, Jia-Ling Chen
Abstract:
This study reports results of a meta-analytic path analysis e-learning Acceptance Model with k = 27 studies, Databases searched included Information Sciences Institute (ISI) website. Variables recorded included perceived usefulness, perceived ease of use, attitude toward behavior, and behavioral intention to use e-learning. A correlation matrix of these variables was derived from meta-analytic data and then analyzed by using structural path analysis to test the fitness of the e-learning acceptance model to the observed aggregated data. Results showed the revised hypothesized model to be a reasonable, good fit to aggregated data. Furthermore, discussions and implications are given in this article.
Keywords: E-learning, Meta Analytic Path Analysis, Technology Acceptance Model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24452316 Cloud Computing for E-Learning with More Emphasis on Security Issues
Authors: Sajjad Hashemi, Seyyed Yasser Hashemi
Abstract:
In today's world, success of most systems depend on the use of new technologies and information technology (IT) which aimed to increase efficiency and satisfaction of users. One of the most important systems that use information technology to deliver services is the education system. But for educational services in the form of E-learning systems, hardware and software equipment should be containing high quality, which requires substantial investment. Because the vast majority of educational establishments can not invest in this area so the best way for them is reducing the costs and providing the E-learning services by using cloud computing. But according to the novelty of the cloud technology, it can create challenges and concerns that the most noted among them are security issues. Security concerns about cloud-based E-learning products are critical and security measures essential to protect valuable data of users from security vulnerabilities in products. Thus, the success of these products happened if customers meet security requirements then can overcome security threats. In this paper tried to explore cloud computing and its positive impact on E- learning and put main focus to identify security issues that related to cloud-based E-learning efforts which have been improve security and provide solutions in management challenges.
Keywords: Cloud computing, E-Learning, Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32202315 From F2F to Online Sessions: Changing Pattern of Instructions in Open and Distance Learning in India
Authors: Subramaniam Chandran
Abstract:
This paper presents an assessment study conducted among the distance learners in India. Open and distance learning systems have traveled a long way since its inception and its journey has witnessed the evolution and adoption of different generations of technology. This study focuses on the distant learners in India. Sampling for this study has been derived from the mass enrollment from Tamil Nadu area, a southern state of India. Learners were chosen from dual mode universities, private universities, Tamil Nadu Open University and IGNOU. The main focus of the study is to examine the coverage and appropriation of students support services and learning aids. It explores two aspects: the facilities available and the awareness and use of such services. It includes, self-learning materials, face-to-face counseling, multimedia learning materials, website, e-learning, radio and television services etc. While exploring the student-s perspective on these learning aspects, it is important to understand the perspectives of the teachers. Two different interests are visible among the teachers. Majority of the teachers support faceto- face counseling. However, the young teachers are in favour of online learning and multimedia supports in teaching. Through the awareness is somewhat high, the actual participation in online is very low. This is due to the inadequate infrastructure as well as the traditional attitudes of the teachers. Still the face-to-face sessions remain popular than online.Keywords: Face-to-face session, online session, distance learning, multimedia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14922314 Permanent Magnet Machine Can Be a Vibration Sensor for Itself
Authors: M. Barański
Abstract:
This article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article will be discussed: the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application and it is the main thesis of author’s doctoral dissertation.
Keywords: Electrical vehicle, generator, permanent magnet, traction drive, vibrations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23152313 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22172312 Solving Single Machine Total Weighted Tardiness Problem Using Gaussian Process Regression
Authors: Wanatchapong Kongkaew
Abstract:
This paper proposes an application of probabilistic technique, namely Gaussian process regression, for estimating an optimal sequence of the single machine with total weighted tardiness (SMTWT) scheduling problem. In this work, the Gaussian process regression (GPR) model is utilized to predict an optimal sequence of the SMTWT problem, and its solution is improved by using an iterated local search based on simulated annealing scheme, called GPRISA algorithm. The results show that the proposed GPRISA method achieves a very good performance and a reasonable trade-off between solution quality and time consumption. Moreover, in the comparison of deviation from the best-known solution, the proposed mechanism noticeably outperforms the recently existing approaches.
Keywords: Gaussian process regression, iterated local search, simulated annealing, single machine total weighted tardiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22352311 Educase – Intelligent System for Pedagogical Advising Using Case-Based Reasoning
Authors: Elionai Moura, José A. da Cunha, César Analide
Abstract:
This paper introduces a proposal scheme for an Intelligent System applied to Pedagogical Advising using Case-Based Reasoning, to find consolidated solutions before used for the new problems, making easier the task of advising students to the pedagogical staff. We do intend, through this work, introduce the motivation behind the choices for this system structure, justifying the development of an incremental and smart web system who learns bests solutions for new cases when it’s used, showing technics and technology.
Keywords: Case-based Reasoning, Pedagogical Advising, Educational Data-Mining (EDM), Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20832310 Lifelong Distance Learning and Skills Development: A Case Study Analysis in Greece
Authors: Eleni Giouli
Abstract:
Distance learning provides a flexible approach to education, enabling busy learners to complete their coursework at their own pace, on their own schedule, and from a convenient location. This flexibility combined with a series of other issues; make the benefits of lifelong distance learning numerous. The purpose of the paper is to investigate whether distance education can contribute to the improvement of adult skills in Greece, highlighting in this way the necessity of the lifelong distance learning. To investigate this goal, a questionnaire is constructed and analyzed based on responses from 3,016 attendees of lifelong distance learning programs in the e-learning of the National and Kapodistrian University of Athens in Greece. In order to do so, a series of relationships is examined including the effects of a) the gender, b) the previous educational level, c) the current employment status, and d) the method used in the distance learning program, on the development of new general, technical, administrative, social, cultural, entrepreneurial and green skills. The basic conclusions that emerge after using a binary logistic framework are that the following factors are critical in order to develop new skills: the gender, the education level and the educational method used in the lifelong distance learning program. The skills more significantly affected by those factors are the acquiring new skills in general, as well as acquiring general, language and cultural, entrepreneurial and green skills, while for technical and social skills only gender and educational method play a crucial role. Moreover, routine skills and social skills are not affected by the four factors included in the analysis.
Keywords: Adult skills, distance learning, education, lifelong learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596