Search results for: organizational features
1277 Study on the Effect of Road Infrastructure, Socio-Economic and Demographic Features on Road Crashes in Bangladesh
Authors: Shakil M. Rifaat, Md. H. Rahman, Mohammed, Mosabbir Pasha
Abstract:
Road crashes not only claim lives and inflict injuries but also create economic burden to the society due to loss of productivity. The problem of deaths and injuries as a result of road traffic crashes is now acknowledged to be a global phenomenon with authorities in virtually all countries of the world concerned about the growth in the number of people killed and seriously injured on their roads. However, the road crash scenario of a developing country like Bangladesh is much worse comparing with this of developed countries. For developing proper countermeasures it is necessary to identify the factors affecting crash occurrences. The objectives of the study is to examine the effect of district wise road infrastructure, socioeconomic and demographic features on crash occurrence .The unit of analysis will be taken as individual district which has not been explored much in the past. Reported crash data obtained from Bangladesh Road Transport Authority (BRTA) from the year 2004 to 2010 are utilized to develop negative binomial model. The model result will reveal the effect of road length (both paved and unpaved), road infrastructure and several socio economic characteristics on district level crash frequency in Bangladesh.
Keywords: Demographic, Negative Binomial Model, Road Infrastructure, Socio-economic, Traffic Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33721276 Predictive Analytics of Student Performance Determinants in Education
Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi
Abstract:
Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.
Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5481275 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40321274 IT Management: How IT Managers Gain IT knowledge
Authors: Jes Søndergaard, Torben Tambo, Christian Koch
Abstract:
It is not a secret that, IT management has become more and more and integrated part of almost all organizations. IT managers posses an enormous amount of knowledge within both organizational knowledge and general IT knowledge. This article investigates how IT managers keep themselves updated on IT knowledge in general and looks into how much time IT managers spend on weekly basis searching the net for new or problem solving IT knowledge. The theory used in this paper is used to investigate the current role of IT managers and what issues they are facing. Furthermore a research is conducted where 7 IT managers in medium sized and large Danish companies are interviewed to add further focus on the role of the IT manager and to focus on how they keep themselves updated. Beside finding substantial need for more research, IT managers – generalists or specialists – only have limited knowledge resources at hand in updating their own knowledge – leaving much initiative to vendors.Keywords: CIO, information Technology, Knowledge, Management, Organization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14961273 Geology, Geomorphology and Genesis of Andarokh Karstic Cave, North-East Iran
Authors: Mojtaba Heydarizad
Abstract:
Andarokh basin is one of the main karstic regions in Khorasan Razavi province NE Iran. This basin is part of Kopeh-Dagh mega zone extending from Caspian Sea in the east to northern Afghanistan in the west. This basin is covered by Mozdooran Formation, Ngr evaporative formation and quaternary alluvium deposits in descending order of age. Mozdooran carbonate formation is notably karstified. The main surface karstic features in Mozdooran formation are Groove karren, Cleft karren, Rain pit, Rill karren, Tritt karren, Kamintza, Domes, and Table karren. In addition to surface features, deep karstic feature Andarokh Cave also exists in the region. Studying Ca, Mg, Mn, Sr, Fe concentration and Sr/Mn ratio in Mozdooran formation samples with distance to main faults and joints system using PCA analyses demonstrates intense meteoric digenesis role in controlling carbonate rock geochemistry. The karst evaluation in Andarokh basin varies from early stages 'deep seated karst' in Mesozoic to mature karstic system 'Exhumed karst' in quaternary period. Andarokh cave (the main cave in Andarokh basin) is rudimentary branch work consists of three passages of A, B and C and two entrances Andarokh and Sky.
Keywords: Andarokh basin, Andarokh cave, geochemical analyses and karst evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8311272 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow
Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat
Abstract:
Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.
Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12621271 Multi-Layer Perceptron and Radial Basis Function Neural Network Models for Classification of Diabetic Retinopathy Disease Using Video-Oculography Signals
Authors: Ceren Kaya, Okan Erkaymaz, Orhan Ayar, Mahmut Özer
Abstract:
Diabetes Mellitus (Diabetes) is a disease based on insulin hormone disorders and causes high blood glucose. Clinical findings determine that diabetes can be diagnosed by electrophysiological signals obtained from the vital organs. 'Diabetic Retinopathy' is one of the most common eye diseases resulting on diabetes and it is the leading cause of vision loss due to structural alteration of the retinal layer vessels. In this study, features of horizontal and vertical Video-Oculography (VOG) signals have been used to classify non-proliferative and proliferative diabetic retinopathy disease. Twenty-five features are acquired by using discrete wavelet transform with VOG signals which are taken from 21 subjects. Two models, based on multi-layer perceptron and radial basis function, are recommended in the diagnosis of Diabetic Retinopathy. The proposed models also can detect level of the disease. We show comparative classification performance of the proposed models. Our results show that proposed the RBF model (100%) results in better classification performance than the MLP model (94%).
Keywords: Diabetic retinopathy, discrete wavelet transform, multi-layer perceptron, radial basis function, video-oculography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13461270 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution
Authors: Tarek Sedki
Abstract:
Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.
Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4251269 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks
Authors: Yao-Hong Tsai
Abstract:
Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9531268 Using Satellite Images Datasets for Road Intersection Detection in Route Planning
Authors: Fatma El-zahraa El-taher, Ayman Taha, Jane Courtney, Susan Mckeever
Abstract:
Understanding road networks plays an important role in navigation applications such as self-driving vehicles and route planning for individual journeys. Intersections of roads are essential components of road networks. Understanding the features of an intersection, from a simple T-junction to larger multi-road junctions is critical to decisions such as crossing roads or selecting safest routes. The identification and profiling of intersections from satellite images is a challenging task. While deep learning approaches offer state-of-the-art in image classification and detection, the availability of training datasets is a bottleneck in this approach. In this paper, a labelled satellite image dataset for the intersection recognition problem is presented. It consists of 14,692 satellite images of Washington DC, USA. To support other users of the dataset, an automated download and labelling script is provided for dataset replication. The challenges of construction and fine-grained feature labelling of a satellite image dataset are examined, including the issue of how to address features that are spread across multiple images. Finally, the accuracy of detection of intersections in satellite images is evaluated.
Keywords: Satellite images, remote sensing images, data acquisition, autonomous vehicles, robot navigation, route planning, road intersections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7571267 Applying the Regression Technique for Prediction of the Acute Heart Attack
Authors: Paria Soleimani, Arezoo Neshati
Abstract:
Myocardial infarction is one of the leading causes of death in the world. Some of these deaths occur even before the patient reaches the hospital. Myocardial infarction occurs as a result of impaired blood supply. Because the most of these deaths are due to coronary artery disease, hence the awareness of the warning signs of a heart attack is essential. Some heart attacks are sudden and intense, but most of them start slowly, with mild pain or discomfort, then early detection and successful treatment of these symptoms is vital to save them. Therefore, importance and usefulness of a system designing to assist physicians in early diagnosis of the acute heart attacks is obvious. The main purpose of this study would be to enable patients to become better informed about their condition and to encourage them to seek professional care at an earlier stage in the appropriate situations. For this purpose, the data were collected on 711 heart patients in Iran hospitals. 28 attributes of clinical factors can be reported by patients; were studied. Three logistic regression models were made on the basis of the 28 features to predict the risk of heart attacks. The best logistic regression model in terms of performance had a C-index of 0.955 and with an accuracy of 94.9%. The variables, severe chest pain, back pain, cold sweats, shortness of breath, nausea and vomiting, were selected as the main features.
Keywords: Coronary heart disease, acute heart attacks, prediction, logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24251266 Trajectory Guided Recognition of Hand Gestures having only Global Motions
Authors: M. K. Bhuyan, P. K. Bora, D. Ghosh
Abstract:
One very interesting field of research in Pattern Recognition that has gained much attention in recent times is Gesture Recognition. In this paper, we consider a form of dynamic hand gestures that are characterized by total movement of the hand (arm) in space. For these types of gestures, the shape of the hand (palm) during gesturing does not bear any significance. In our work, we propose a model-based method for tracking hand motion in space, thereby estimating the hand motion trajectory. We employ the dynamic time warping (DTW) algorithm for time alignment and normalization of spatio-temporal variations that exist among samples belonging to the same gesture class. During training, one template trajectory and one prototype feature vector are generated for every gesture class. Features used in our work include some static and dynamic motion trajectory features. Recognition is accomplished in two stages. In the first stage, all unlikely gesture classes are eliminated by comparing the input gesture trajectory to all the template trajectories. In the next stage, feature vector extracted from the input gesture is compared to all the class prototype feature vectors using a distance classifier. Experimental results demonstrate that our proposed trajectory estimator and classifier is suitable for Human Computer Interaction (HCI) platform.
Keywords: Hand gesture, human computer interaction, key video object plane, dynamic time warping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27421265 Fuzzy Wavelet Packet based Feature Extraction Method for Multifunction Myoelectric Control
Authors: Rami N. Khushaba, Adel Al-Jumaily
Abstract:
The myoelectric signal (MES) is one of the Biosignals utilized in helping humans to control equipments. Recent approaches in MES classification to control prosthetic devices employing pattern recognition techniques revealed two problems, first, the classification performance of the system starts degrading when the number of motion classes to be classified increases, second, in order to solve the first problem, additional complicated methods were utilized which increase the computational cost of a multifunction myoelectric control system. In an effort to solve these problems and to achieve a feasible design for real time implementation with high overall accuracy, this paper presents a new method for feature extraction in MES recognition systems. The method works by extracting features using Wavelet Packet Transform (WPT) applied on the MES from multiple channels, and then employs Fuzzy c-means (FCM) algorithm to generate a measure that judges on features suitability for classification. Finally, Principle Component Analysis (PCA) is utilized to reduce the size of the data before computing the classification accuracy with a multilayer perceptron neural network. The proposed system produces powerful classification results (99% accuracy) by using only a small portion of the original feature set.Keywords: Biomedical Signal Processing, Data mining andInformation Extraction, Machine Learning, Rehabilitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371264 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that effect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decisionmaking.
Keywords: Best candidates' method, decision making, decision support system, operations research.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19111263 The Relationship between Knowledge Management Strategy and Information Technology Strategy
Authors: Hui-Ling Huang, Yue-Yang Chen, Ming-Chi Tsai, Cheng-Jiun Lee
Abstract:
Recently, a great number of theoretical frameworks have been proposed to develop the linkages between knowledge management (KM) and organizational strategies. However, while there has been much theorizing and case study in the area, validated research models integrating KM and information technology strategies for empirical testing of these theories have been scarce. In this research, we try to develop a research model for explaining the relationship between KM strategy and IT strategy and their effects on performance. Finally, meaningful propositions and conclusions are derived, and suggestions for future research are proposed and discussed.Keywords: Knowledge management strategy, information technology strategy, knowledge management performance, information technology performance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30041262 Animal-Assisted Therapy for Persons with Disabilities Based on Canine Tail Language Interpretation via Gaussian-Trapezoidal Fuzzy Emotional Behavior Model
Authors: W. Phanwanich, O. Kumdee, P. Ritthipravat, Y. Wongsawat
Abstract:
In order to alleviate the mental and physical problems of persons with disabilities, animal-assisted therapy (AAT) is one of the possible modalities that employs the merit of the human-animal interaction. Nevertheless, to achieve the purpose of AAT for persons with severe disabilities (e.g. spinal cord injury, stroke, and amyotrophic lateral sclerosis), real-time animal language interpretation is desirable. Since canine behaviors can be visually notable from its tail, this paper proposes the automatic real-time interpretation of canine tail language for human-canine interaction in the case of persons with severe disabilities. Canine tail language is captured via two 3-axis accelerometers. Directions and frequencies are selected as our features of interests. The novel fuzzy rules based on Gaussian-Trapezoidal model and center of gravity (COG)-based defuzzification method are proposed in order to interpret the features into four canine emotional behaviors, i.e., agitate, happy, scare and neutral as well as its blended emotional behaviors. The emotional behavior model is performed in the simulated dog and has also been evaluated in the real dog with the perfect recognition rate.Keywords: Animal-assisted therapy (AAT), Persons with disabilities, Canine tail language, Fuzzy emotional behavior model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20171261 ERP Implementation Success in Iran: Examining the Role of System Environment Factors
Authors: Shahin Dezdar, Sulaiman Ainin
Abstract:
The aim of this paper is to examine factors related to system environment (namely, system quality and vendor support) that influences ERP implementation success in Iranian companies. Implementation success is identified using user satisfaction and organizational impact perspective. The study adopts the survey questionnaire approach to collect empirical data. The questionnaire was distributed to ERP users and a total of 384 responses were used for analysis. The results illustrated that both system quality and vendor support have significant effect on ERP implementation success. This implies that companies must ensure they source for the best available system and a vendor that is dependable, reliable and trustworthy.
Keywords: Enterprise resource planning (ERP), Iran, system quality, vendor support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29931260 Exploring the Roles of Social Exchanges in Using Information Systems
Authors: Kee-Young Kwahk
Abstract:
Previous studies have indicated that one of the most critical failure reasons of enterprise systems is the lack of knowledge sharing and utilization across organizations. As a consequence, many information systems researchers have paid attention to examining the effect of absorptive capacity closely associated with knowledge sharing and transferring on IS usage performance. A lack of communications and interactions due to a lack of organizational citizenship behavior might lead to weak absorptive capacity and thus negatively influence knowledge sharing across organizations. In this study, a theoretical model which delves into the relationship between usage performance of enterprise systems and its determinants was established.
Keywords: Usage performance of information systems, Social exchanges, Enterprise systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531259 Expatriation Success: Different Perceptions
Authors: Graziele Zwielewski, Suzana R. Tolfo
Abstract:
The globalization of markets, the need to develop competitive advantages and core competencies, among other things, lead organizations to increasingly cross borders to operate in other countries. The expatriation of professionals who go to work in another country besides their own becomes increasingly common. In order to generate data about this issue, research was conducted concerning the perception of expatriate employees concerning expatriation success. The research method used was case study through a qualitative approach. This research was done through interviews with five India expatriates and five China expatriates, interview with expatriate department heads and analysis of company documents. It was found that there are differences between the organizational perception and perception of expatriates of what constitutes mission success. The paper also provides suggestions for further research and suggestions for future expatriates.
Keywords: Expatriation success, International assignments, Success factors, Success for expatriates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21451258 Differences in Students` Satisfaction with Distance Learning Studies
Authors: Ana Horvat, Maja Krsmanovic, Mladen Djuric
Abstract:
Rapid growth of distance learning resulted in importance to conduct research on students- satisfaction with distance learning because differences in students- satisfaction might influence educational opportunities for learning in a relevant Web-based environment. In line with this, this paper deals with satisfaction of students with distance module at Faculty of organizational sciences (FOS) in Serbia as well as some factors affecting differences in their satisfaction . We have conducted a research on a population of 68 first-year students of distance learning studies at FOS. Using statistical techniques, we have found out that there is no significant difference in students- satisfaction with distance learning module between men and women. In the same way, we also concluded that there is a difference in satisfaction with distance learning module regarding to student-s perception of opportunity to gain knowledge as the classic students.Keywords: distance learning, students' satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25991257 An Efficient Biometric Cryptosystem using Autocorrelators
Authors: R. Bremananth, A. Chitra
Abstract:
Cryptography provides the secure manner of information transmission over the insecure channel. It authenticates messages based on the key but not on the user. It requires a lengthy key to encrypt and decrypt the sending and receiving the messages, respectively. But these keys can be guessed or cracked. Moreover, Maintaining and sharing lengthy, random keys in enciphering and deciphering process is the critical problem in the cryptography system. A new approach is described for generating a crypto key, which is acquired from a person-s iris pattern. In the biometric field, template created by the biometric algorithm can only be authenticated with the same person. Among the biometric templates, iris features can efficiently be distinguished with individuals and produces less false positives in the larger population. This type of iris code distribution provides merely less intra-class variability that aids the cryptosystem to confidently decrypt messages with an exact matching of iris pattern. In this proposed approach, the iris features are extracted using multi resolution wavelets. It produces 135-bit iris codes from each subject and is used for encrypting/decrypting the messages. The autocorrelators are used to recall original messages from the partially corrupted data produced by the decryption process. It intends to resolve the repudiation and key management problems. Results were analyzed in both conventional iris cryptography system (CIC) and non-repudiation iris cryptography system (NRIC). It shows that this new approach provides considerably high authentication in enciphering and deciphering processes.Keywords: Autocorrelators, biometrics cryptography, irispatterns, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15271256 Attributions by Team Members for Team Outcomes in Finnish Working Life
Authors: Maarit Valo, Pertti Hurme
Abstract:
This study focuses on teamwork in Finnish working life. Through a wide cross-section of teams the study examines the causes to which team members attribute the outcomes of their teams. Qualitative data was collected from 314 respondents. They wrote 616 stories to describe memorable experiences of success and failure in teamwork. The stories revealed 1930 explanations. The findings indicate that both favorable and unfavorable team outcomes are perceived as being caused by the characteristics of team members, relationships between members, team communication, team structure, team goals, team leadership, and external forces. The types represent different attribution levels in the context of organizational teamwork.Keywords: Team, teamwork, team outcomes, workplace, working life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15981255 An Investigation of Quality Practices in Libyan Industrial Companies
Authors: Mostafa A. Shokshok, Omran Ali Abu Krais
Abstract:
This paper describes the collection and analysis of data obtained from face-to-face interviews conducted in selected Libyan industrial companies. The objectives of the interviews are to enhance understanding, and generate explanations of current issues in culture and quality management systems in Libyan companies. The method used in analyzing the questions, as well as the main finding of each question are explained. The interviews probed areas identify national and organizational culture, quality management systems, current methods, effects, barriers and other factors affecting the success of quality management implementation. Eleven questions are prepared and been discussed with the interviewees.Keywords: Interviews, quality, culture, Libyan industrial companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19521254 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22071253 Sustained Competitive Advantage: Strategic HRM Initiatives and Consequences in Indian Context
Authors: S. Velmurugan, K. B. Akhilesh
Abstract:
In the past few decades, researchers have witnessed a paradigm shift in Human Resource Management-from individual performance to organizational outcomes with the role of Human resource (HR) managers becoming increasingly significant to the organization. In such a context, it is important to examine HR practices from a strategic perspective on the sustained competitive advantage (SCA) of the organizations. The present study explores how Indian organisations look at their human resources strategically when faced with competitive environment. Also, it explores strategic initiatives being taken to manage human resources within the organisations and how these initiatives promote SCA in terms of enhancing the overall customer-centric delivery of goods and services.
Keywords: Strategic HRM, Strategic HRM Initiatives, Consequences, and Sustained Competitive Advantage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46211252 Advantages and Disadvantages of Business Continuity Management
Authors: K. Venclova, H. Urbancova, H. Vostra Vydrova
Abstract:
In current global economics the application of Business Continuity Management is the prerequisite for sustainable competitive advantage in an organization. Business Continuity Management is a managerial which identifies the potential impact of losses in an organization. The aim of this paper is to identify and critically evaluate the relative advantages and disadvantages of deploying Business Continuity Management in an organization on the basis of seven criteria. The strongest advantage of Business Continuity Management is in its capacity to identify a crisis situation and help the organization to flexibly and also to keep the critical knowledge within the organization. By contrast the main disadvantage is that establishing Business Continuity Management in an organization is time-consuming and its implementation as an integral part of the organizational culture present significant difficulties.
Keywords: Business continuity management, criteria, advantages, disadvantages, organisations, survey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132621251 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm
Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn
Abstract:
Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7311250 ParkedGuard: An Efficient and Accurate Parked Domain Detection System Using Graphical Locality Analysis and Coarse-To-Fine Strategy
Authors: Chia-Min Lai, Wan-Ching Lin, Hahn-Ming Lee, Ching-Hao Mao
Abstract:
As world wild internet has non-stop developments, making profit by lending registered domain names emerges as a new business in recent years. Unfortunately, the larger the market scale of domain lending service becomes, the riskier that there exist malicious behaviors or malwares hiding behind parked domains will be. Also, previous work for differentiating parked domain suffers two main defects: 1) too much data-collecting effort and CPU latency needed for features engineering and 2) ineffectiveness when detecting parked domains containing external links that are usually abused by hackers, e.g., drive-by download attack. Aiming for alleviating above defects without sacrificing practical usability, this paper proposes ParkedGuard as an efficient and accurate parked domain detector. Several scripting behavioral features were analyzed, while those with special statistical significance are adopted in ParkedGuard to make feature engineering much more cost-efficient. On the other hand, finding memberships between external links and parked domains was modeled as a graph mining problem, and a coarse-to-fine strategy was elaborately designed by leverage the graphical locality such that ParkedGuard outperforms the state-of-the-art in terms of both recall and precision rates.Keywords: Coarse-to-fine strategy, domain parking service, graphical locality analysis, parked domain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12501249 The Relationship between Manufacturing System Performance and Green Practices in Supply Chain Management
Authors: Wan Hasrulnizzam Wan Mahmood, Mohd Nizam Ab Rahman, Baba Md Deros
Abstract:
Green supply chain management is an increasingly recognized practice among companies that are seeking to improve environmental performance. Of particular concern is how to arouse organizational awareness and put green activities into practice in order to enhance manufacturing performances. This paper investigates the correlation of green supply chain practices and manufacturing performances in Malaysian certified MS ISO 14000 manufacturing firms. The findings shows that green supply chain practices which that can be denominated product recycling, environmental compliance and optimization have significant influence to some of the manufacturing performances.Keywords: Green supply chain practice, Manufacturing system performance, Malaysia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17621248 Innovation, e-Learning and Higher Education: An Example of a University- LMS Adoption Process
Authors: Ana Mafalda Gonçalves, Neuza Pedro
Abstract:
The evolution of ICT has changed all sections of society and these changes have been creating an irreversible impact on higher education institutions, which are expected to adopt innovative technologies in their teaching practices. As theorical framework this study select Rogers theory of innovation diffusion which is widely used to illustrate how technologies move from a localized invented to a widespread evolution on organizational practices. Based on descriptive statistical data collected in a European higher education institution three years longitudinal study was conducted for analyzing and discussion the different stages of a LMS adoption process. Results show that ICT integration in higher education is not progressively successful and a linear process and multiple aspects must be taken into account.
Keywords: e-learning, higher education, LMS, innovation, technologies
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468