Search results for: Time domain
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7108

Search results for: Time domain

6478 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents

Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil

Abstract:

In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.

Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
6477 Application of Extreme Learning Machine Method for Time Series Analysis

Authors: Rampal Singh, S. Balasundaram

Abstract:

In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.

Keywords: Chaotic time series, Extreme learning machine, Generalization performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3510
6476 Computationally Efficient Adaptive Rate Sampling and Adaptive Resolution Analysis

Authors: Saeed Mian Qaisar, Laurent Fesquet, Marc Renaudin

Abstract:

Mostly the real life signals are time varying in nature. For proper characterization of such signals, time-frequency representation is required. The STFT (short-time Fourier transform) is a classical tool used for this purpose. The limitation of the STFT is its fixed time-frequency resolution. Thus, an enhanced version of the STFT, which is based on the cross-level sampling, is devised. It can adapt the sampling frequency and the window function length by following the input signal local variations. Therefore, it provides an adaptive resolution time-frequency representation of the input. The computational complexity of the proposed STFT is deduced and compared to the classical one. The results show a significant gain of the computational efficiency and hence of the processing power. The processing error of the proposed technique is also discussed.

Keywords: Level Crossing Sampling, Activity Selection, Adaptive Resolution Analysis, Computational Complexity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
6475 Estimation of Relative Subsidence of Collapsible Soils Using Electromagnetic Measurements

Authors: Henok Hailemariam, Frank Wuttke

Abstract:

Collapsible soils are weak soils that appear to be stable in their natural state, normally dry condition, but rapidly deform under saturation (wetting), thus generating large and unexpected settlements which often yield disastrous consequences for structures unwittingly built on such deposits. In this study, a prediction model for the relative subsidence of stressed collapsible soils based on dielectric permittivity measurement is presented. Unlike most existing methods for soil subsidence prediction, this model does not require moisture content as an input parameter, thus providing the opportunity to obtain accurate estimation of the relative subsidence of collapsible soils using dielectric measurement only. The prediction model is developed based on an existing relative subsidence prediction model (which is dependent on soil moisture condition) and an advanced theoretical frequency and temperature-dependent electromagnetic mixing equation (which effectively removes the moisture content dependence of the original relative subsidence prediction model). For large scale sub-surface soil exploration purposes, the spatial sub-surface soil dielectric data over wide areas and high depths of weak (collapsible) soil deposits can be obtained using non-destructive high frequency electromagnetic (HF-EM) measurement techniques such as ground penetrating radar (GPR). For laboratory or small scale in-situ measurements, techniques such as an open-ended coaxial line with widely applicable time domain reflectometry (TDR) or vector network analysers (VNAs) are usually employed to obtain the soil dielectric data. By using soil dielectric data obtained from small or large scale non-destructive HF-EM investigations, the new model can effectively predict the relative subsidence of weak soils without the need to extract samples for moisture content measurement. Some of the resulting benefits are the preservation of the undisturbed nature of the soil as well as a reduction in the investigation costs and analysis time in the identification of weak (problematic) soils. The accuracy of prediction of the presented model is assessed by conducting relative subsidence tests on a collapsible soil at various initial soil conditions and a good match between the model prediction and experimental results is obtained.

Keywords: Collapsible soil, relative subsidence, dielectric permittivity, moisture content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110
6474 Automated Segmentation of ECG Signals using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Mohammad Hassan Moradi, Sohrab Saberi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG-s. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna-s two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna-s method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise DerivativeDynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
6473 Investigation of Short Time Scale Variation of Solar Radiation Spectrum in UV, PAR, and NIR Bands due to Atmospheric Aerosol and Water Vapor

Authors: Jackson H. W. Chang, Jedol Dayou, Justin Sentian

Abstract:

Long terms variation of solar insolation had been widely studied. However, its parallel observations in short time scale is rather lacking. This paper aims to investigate the short time scale evolution of solar radiation spectrum (UV, PAR, and NIR bands) due to atmospheric aerosols and water vapors. A total of 25 days of global and diffused solar spectrum ranges from air mass 2 to 6 were collected using ground-based spectrometer with shadowband technique. The result shows that variation of solar radiation is the least in UV fraction, followed by PAR and the most in NIR. Broader variations in PAR and NIR are associated with the short time scale fluctuations of aerosol and water vapors. The corresponding daily evolution of UV, PAR, and NIR fractions implies that aerosol and water vapors variation could also be responsible for the deviation pattern in the Langley-plot analysis.

Keywords: Aerosol, short time scale variation, solar radiation, water vapor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
6472 A Combination of Similarity Ranking and Time for Social Research Paper Searching

Authors: P. Jomsri

Abstract:

Nowadays social media are important tools for web resource discovery. The performance and capabilities of web searches are vital, especially search results from social research paper bookmarking. This paper proposes a new algorithm for ranking method that is a combination of similarity ranking with paper posted time or CSTRank. The paper posted time is static ranking for improving search results. For this particular study, the paper posted time is combined with similarity ranking to produce a better ranking than other methods such as similarity ranking or SimRank. The retrieval performance of combination rankings is evaluated using mean values of NDCG. The evaluation in the experiments implies that the chosen CSTRank ranking by using weight score at ratio 90:10 can improve the efficiency of research paper searching on social bookmarking websites.

Keywords: combination ranking, information retrieval, time, similarity ranking, static ranking, weight score

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
6471 Web Based Real Time Laboratory Applications of Analog and Digital Communication Courses with Lab VIEW Access

Authors: Ayse Yayla, Aynur Akar

Abstract:

Developments in scientific and technical area cause to use new methods and techniques in education, as is the case in all fields. Especially, the internet contributes a variety of new methods to design virtual and real time laboratory applications in education. In this study, a real time virtual laboratory is designed and implemented for analog and digital communications laboratory experiments by using Lab VIEW program for Marmara University Electronics-Communication Department. In this application, students can access the virtual laboratory web site and perform their experiments without any limitation of time and location so as the students can observe the signals by changing the parameters of the experiment and evaluate the results.

Keywords: Virtual laboratory, LabVIEW, ModulationTechniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
6470 New Stability Analysis for Neural Networks with Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of asymptotically stability for neural networks with time-varying delays.By establishing a suitable Lyapunov-Krasovskii function and several novel sufficient conditions are obtained to guarantee the asymptotically stability of the considered system. Finally,two numerical examples are given to illustrate the effectiveness of the proposed main results.

Keywords: Neural networks, Lyapunov-Krasovskii, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
6469 Comparison of Artificial Neural Network Architectures in the Task of Tourism Time Series Forecast

Authors: João Paulo Teixeira, Paula Odete Fernandes

Abstract:

The authors have been developing several models based on artificial neural networks, linear regression models, Box- Jenkins methodology and ARIMA models to predict the time series of tourism. The time series consist in the “Monthly Number of Guest Nights in the Hotels" of one region. Several comparisons between the different type models have been experimented as well as the features used at the entrance of the models. The Artificial Neural Network (ANN) models have always had their performance at the top of the best models. Usually the feed-forward architecture was used due to their huge application and results. In this paper the author made a comparison between different architectures of the ANNs using simply the same input. Therefore, the traditional feed-forward architecture, the cascade forwards, a recurrent Elman architecture and a radial based architecture were discussed and compared based on the task of predicting the mentioned time series.

Keywords: Artificial Neural Network Architectures, time series forecast, tourism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
6468 Diagnostic Investigation of Liftoff Time of Solid Propellant Rockets

Authors: Vignesh Rangaraj, Jerin John, N. Naveen, M. Karuppasamy Pandian, P. Sathyan, V. R. Sanal Kumar

Abstract:

In this paper parametric analytical studies have been carried out to examine the intrinsic flow physics pertaining to the liftoff time of solid propellant rockets. Idealized inert simulators of solid rockets are selected for numerical studies to examining the preignition chamber dynamics. Detailed diagnostic investigations have been carried out using an unsteady two-dimensional k-omega turbulence model. We conjectured from the numerical results that the altered variations of the igniter jet impingement angle, turbulence level, time and location of the first ignition, flame spread characteristics, the overall chamber dynamics including the boundary layer growth history are having bearing on the time for nozzle flow chocking for establishing the required thrust for the rocket liftoff. We concluded that the altered flow choking time of strap-on motors with the pre-determined identical ignition time at the lift off phase will lead to the malfunctioning of the rocket. We also concluded that, in the light of the space debris, an error in predicting the liftoff time can lead to an unfavorable launch window amounts the satellite injection errors and/or the mission failures.

Keywords: Liftoff, Nozzle Choking, Solid Rocket, Takeoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
6467 Stability Verification for Bilateral Teleoperation System with Variable Time Delay

Authors: M. Sallam, A. Ramadan, M. Fanni, M. Abdellatif

Abstract:

Time delay in bilateral teleoperation system was introduced as a sufficient reason to make the system unstable or certainly degrade the system performance. In this paper, simulations and experimental results of implementing p-like control scheme, under different ranges of variable time delay, will be presented to verify a certain criteria, which guarantee the system stability and position tracking. The system consists of two Phantom premium 1.5A devices. One of them acts as a master and the other acts as a slave. The study includes deriving the Phantom kinematic and dynamic model, establishing the link between the two Phantoms over Simulink in Matlab, and verifying the stability criteria with simulations and real experiments.

Keywords: bilateral teleoperation, Phantom premium 1.5, varying time delay

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
6466 Evolving Knowledge Extraction from Online Resources

Authors: Zhibo Xiao, Tharini Nayanika de Silva, Kezhi Mao

Abstract:

In this paper, we present an evolving knowledge extraction system named AKEOS (Automatic Knowledge Extraction from Online Sources). AKEOS consists of two modules, including a one-time learning module and an evolving learning module. The one-time learning module takes in user input query, and automatically harvests knowledge from online unstructured resources in an unsupervised way. The output of the one-time learning is a structured vector representing the harvested knowledge. The evolving learning module automatically schedules and performs repeated one-time learning to extract the newest information and track the development of an event. In addition, the evolving learning module summarizes the knowledge learned at different time points to produce a final knowledge vector about the event. With the evolving learning, we are able to visualize the key information of the event, discover the trends, and track the development of an event.

Keywords: Evolving learning, knowledge extraction, knowledge graph, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
6465 Automated ECG Segmentation Using Piecewise Derivative Dynamic Time Warping

Authors: Ali Zifan, Sohrab Saberi, Mohammad Hassan Moradi, Farzad Towhidkhah

Abstract:

Electrocardiogram (ECG) segmentation is necessary to help reduce the time consuming task of manually annotating ECG's. Several algorithms have been developed to segment the ECG automatically. We first review several of such methods, and then present a new single lead segmentation method based on Adaptive piecewise constant approximation (APCA) and Piecewise derivative dynamic time warping (PDDTW). The results are tested on the QT database. We compared our results to Laguna's two lead method. Our proposed approach has a comparable mean error, but yields a slightly higher standard deviation than Laguna's method.

Keywords: Adaptive Piecewise Constant Approximation, Dynamic programming, ECG segmentation, Piecewise Derivative Dynamic Time Warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
6464 A Technique for Reachability Graph Generation for the Petri Net Models of Parallel Processes

Authors: Farooq Ahmad, Hejiao Huang, Xiaolong Wang

Abstract:

Reachability graph (RG) generation suffers from the problem of exponential space and time complexity. To alleviate the more critical problem of time complexity, this paper presents the new approach for RG generation for the Petri net (PN) models of parallel processes. Independent RGs for each parallel process in the PN structure are generated in parallel and cross-product of these RGs turns into the exhaustive state space from which the RG of given parallel system is determined. The complexity analysis of the presented algorithm illuminates significant decrease in the time complexity cost of RG generation. The proposed technique is applicable to parallel programs having multiple threads with the synchronization problem.

Keywords: Parallel processes, Petri net, reachability graph, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
6463 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
6462 Synchronization for Impulsive Fuzzy Cohen-Grossberg Neural Networks with Time Delays under Noise Perturbation

Authors: Changzhao Li, Juan Zhang

Abstract:

In this paper, we investigate a class of fuzzy Cohen- Grossberg neural networks with time delays and impulsive effects. By virtue of stochastic analysis, Halanay inequality for stochastic differential equations, we find sufficient conditions for the global exponential square-mean synchronization of the FCGNNs under noise perturbation. In particular, the traditional assumption on the differentiability of the time-varying delays is no longer needed. Finally, a numerical example is given to show the effectiveness of the results in this paper.

Keywords: Fuzzy Cohen-Grossberg neural networks (FCGNNs), complete synchronization, time delays, impulsive, noise perturbation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
6461 On a Discrete-Time GIX/Geo/1/N Queue with Single Working Vacation and Partial Batch Rejection

Authors: Shan Gao

Abstract:

This paper treats a discrete-time finite buffer batch arrival queue with a single working vacation and partial batch rejection in which the inter-arrival and service times are, respectively, arbitrary and geometrically distributed. The queue is analyzed by using the supplementary variable and the imbedded Markov-chain techniques. We obtain steady-state system length distributions at prearrival, arbitrary and outside observer-s observation epochs. We also present probability generation function (p.g.f.) of actual waiting-time distribution in the system and some performance measures.

Keywords: Discrete-time, finite buffer, single working vacation, batch arrival, partial rejection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
6460 A New Approach to the Approximate Solutions of Hamilton-Jacobi Equations

Authors: Joe Imae, Kenjiro Shinagawa, Tomoaki Kobayashi, Guisheng Zhai

Abstract:

We propose a new approach on how to obtain the approximate solutions of Hamilton-Jacobi (HJ) equations. The process of the approximation consists of two steps. The first step is to transform the HJ equations into the virtual time based HJ equations (VT-HJ) by introducing a new idea of ‘virtual-time’. The second step is to construct the approximate solutions of the HJ equations through a computationally iterative procedure based on the VT-HJ equations. It should be noted that the approximate feedback solutions evolve by themselves as the virtual-time goes by. Finally, we demonstrate the effectiveness of our approximation approach by means of simulations with linear and nonlinear control problems.

Keywords: Nonlinear Control, Optimal Control, Hamilton-Jacobi Equation, Virtual-Time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
6459 Detecting Rat’s Kidney Inflammation Using Real Time Photoacoustic Tomography

Authors: M. Y. Lee, D. H. Shin, S. H. Park, W.C. Ham, S.K. Ko, C. G. Song

Abstract:

Photoacoustic Tomography (PAT) is a promising medical imaging modality that combines optical imaging contrast with the spatial resolution of ultrasound imaging. It can also distinguish the changes in biological features. But, real-time PAT system should be confirmed due to photoacoustic effect for tissue. Thus, we have developed a real-time PAT system using a custom-developed data acquisition board and ultrasound linear probe. To evaluate performance of our system, phantom test was performed. As a result of those experiments, the system showed satisfactory performance and its usefulness has been confirmed. We monitored the degradation of inflammation which induced on the rat’s kidney using real-time PAT.

Keywords: Photoacoustic tomography, inflammation detection, rat, kidney, contrast agent, ultrasound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
6458 Feedback-Controlled Server for Scheduling Aperiodic Tasks

Authors: Shinpei Kato, Nobuyuki Yamasaki

Abstract:

This paper proposes a scheduling scheme using feedback control to reduce the response time of aperiodic tasks with soft real-time constraints. We design an algorithm based on the proposed scheduling scheme and Total Bandwidth Server (TBS) that is a conventional server technique for scheduling aperiodic tasks. We then describe the feedback controller of the algorithm and give the control parameter tuning methods. The simulation study demonstrates that the algorithm can reduce the mean response time up to 26% compared to TBS in exchange for slight deadline misses.

Keywords: Real-Time Systems, Aperiodic Task Scheduling, Feedback-Control Scheduling, Total Bandwidth Server.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
6457 Solving of the Fourth Order Differential Equations with the Neumann Problem

Authors: Marziyeh Halimi, Roushanak Lotfikar, Simin Mansouri Borojeni

Abstract:

In this paper we considered the Neumann problem for the fourth order differential equation. First we define the weighted Sobolev space 2 Wα and generalized solution for this equation. Then we consider the existence and uniqueness of the generalized solution, as well as give the description of the spectrum and of the domain of definition of the corresponding operator.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.2000 mathematic subject classification: 34A05, 34A30.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
6456 Steady State of Passive and Active Suspensions in the Physical Domain

Authors: Gilberto Gonzalez-A, Jorge Madrigal

Abstract:

The steady state response of bond graphs representing passive and active suspension is presented. A bond graph with preferred derivative causality assignment to get the steady state is proposed. A general junction structure of this bond graph is proposed. The proposed methodology to passive and active suspensions is applied.

Keywords: Bond graph, steady state, active suspension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
6455 Domin-Specific Language for Enabling End- Users Model-Driven Information System Engineering

Authors: Ahmad F. Subahi, Anthony J. H. Simons

Abstract:

This Paper presents an on-going research in the area of Model-Driven Engineering (MDE). The premise is that UML is too unwieldy to serve as the basis for model-driven engineering. We need a smaller, simpler notation with a cleaner semantics. We propose some ideas for a simpler notation with a clean semantics. The result is known as μML, or the Micro-Modelling Language.

Keywords: Model-driven engineering, model transformations, domain-specific languages, end-user development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
6454 Delay Analysis of Sampled-Data Systems in Hard RTOS

Authors: A. M. Azad, M. Alam, C. M. Hussain

Abstract:

In this paper, we have presented the effect of varying time-delays on performance and stability in the single-channel multirate sampled-data system in hard real-time (RT-Linux) environment. The sampling task require response time that might exceed the capacity of RT-Linux. So a straight implementation with RT-Linux is not feasible, because of the latency of the systems and hence, sampling period should be less to handle this task. The best sampling rate is chosen for the sampled-data system, which is the slowest rate meets all performance requirements. RT-Linux is consistent with its specifications and the resolution of the real-time is considered 0.01 seconds to achieve an efficient result. The test results of our laboratory experiment shows that the multi-rate control technique in hard real-time operating system (RTOS) can improve the stability problem caused by the random access delays and asynchronization.

Keywords: Multi-rate, PID, RT-Linux, Sampled-data, Servo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438
6453 Cross-Search Technique and its Visualization of Peer-to-Peer Distributed Clinical Documents

Authors: Yong Jun Choi, Juman Byun, Simon Berkovich

Abstract:

One of the ubiquitous routines in medical practice is searching through voluminous piles of clinical documents. In this paper we introduce a distributed system to search and exchange clinical documents. Clinical documents are distributed peer-to-peer. Relevant information is found in multiple iterations of cross-searches between the clinical text and its domain encyclopedia.

Keywords: Clinical documents, cross-search, document exchange, information retrieval, peer-to-peer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1295
6452 The Performance of Alternating Top-Bottom Strategy for Successive Over Relaxation Scheme on Two Dimensional Boundary Value Problem

Authors: M. K. Hasan, Y. H. Ng, J. Sulaiman

Abstract:

This paper present the implementation of a new ordering strategy on Successive Overrelaxation scheme on two dimensional boundary value problems. The strategy involve two directions alternatingly; from top and bottom of the solution domain. The method shows to significantly reduce the iteration number to converge. Four numerical experiments were carried out to examine the performance of the new strategy.

Keywords: Two dimensional boundary value problems, Successive Overrelaxation scheme, Alternating Top-Bottom strategy, fast convergence

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
6451 Efficient Time Synchronization in Wireless Sensor Networks

Authors: Shehzad Ashraf Ch., Aftab Ahmed Khan, Zahid Mehmood, Muhammad Ahsan Habib, Qasim Mehmood

Abstract:

Energy efficiency is the key requirement in wireless sensor network as sensors are small, cheap and are deployed in very large number in a large geographical area, so there is no question of replacing the batteries of the sensors once deployed. Different ways can be used for efficient energy transmission including Multi-Hop algorithms, collaborative communication, cooperativecommunication, Beam- forming, routing algorithm, phase, frequency and time synchronization. The paper reviews the need for time synchronization and proposed a BFS based synchronization algorithm to achieve energy efficiency. The efficiency of our protocol has been tested and verified by simulation

Keywords: time synchronization, sensor networks, energy efficiency, breadth first search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1713
6450 A New True RMS-to-DC Converter in CMOS Technology

Authors: H. Asiaban, E. Farshidi

Abstract:

This paper presents a new true RMS-to-DC converter circuit based on a square-root-domain squarer/divider. The circuit is designed by employing up-down translinear loop and using of MOSFET transistors that operate in strong inversion saturation region. The converter offer advantages of two-quadrant input current, low circuit complexity, low supply voltage (1.2V) and immunity from the body effect. The circuit has been simulated by HSPICE. The simulation results are seen to conform to the theoretical analysis and shows benefits of the proposed circuit.

Keywords: Current-mode, squarer/divider, low-pass filter, converter, translinear loop, RMS-to-DC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3277
6449 Web Content Mining: A Solution to Consumer's Product Hunt

Authors: Syed Salman Ahmed, Zahid Halim, Rauf Baig, Shariq Bashir

Abstract:

With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.

Keywords: Data mining, web mining, search engines, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041