Search results for: Clock and Data Recovery (CDR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7838

Search results for: Clock and Data Recovery (CDR)

7208 Explorative Data Mining of Constructivist Learning Experiences and Activities with Multiple Dimensions

Authors: Patrick Wessa, Bart Baesens

Abstract:

This paper discusses the use of explorative data mining tools that allow the educator to explore new relationships between reported learning experiences and actual activities, even if there are multiple dimensions with a large number of measured items. The underlying technology is based on the so-called Compendium Platform for Reproducible Computing (http://www.freestatistics.org) which was built on top the computational R Framework (http://www.wessa.net).

Keywords: Reproducible computing, data mining, explorative data analysis, compendium technology, computer assisted education

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
7207 Analysis of Textual Data Based On Multiple 2-Class Classification Models

Authors: Shigeaki Sakurai, Ryohei Orihara

Abstract:

This paper proposes a new method for analyzing textual data. The method deals with items of textual data, where each item is described based on various viewpoints. The method acquires 2- class classification models of the viewpoints by applying an inductive learning method to items with multiple viewpoints. The method infers whether the viewpoints are assigned to the new items or not by using the models. The method extracts expressions from the new items classified into the viewpoints and extracts characteristic expressions corresponding to the viewpoints by comparing the frequency of expressions among the viewpoints. This paper also applies the method to questionnaire data given by guests at a hotel and verifies its effect through numerical experiments.

Keywords: Text mining, Multiple viewpoints, Differential analysis, Questionnaire data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
7206 Using Automated Database Reverse Engineering for Database Integration

Authors: M. R. Abbasifard, M. Rahgozar, A. Bayati, P. Pournemati

Abstract:

One important problem in today organizations is the existence of non-integrated information systems, inconsistency and lack of suitable correlations between legacy and modern systems. One main solution is to transfer the local databases into a global one. In this regards we need to extract the data structures from the legacy systems and integrate them with the new technology systems. In legacy systems, huge amounts of a data are stored in legacy databases. They require particular attention since they need more efforts to be normalized, reformatted and moved to the modern database environments. Designing the new integrated (global) database architecture and applying the reverse engineering requires data normalization. This paper proposes the use of database reverse engineering in order to integrate legacy and modern databases in organizations. The suggested approach consists of methods and techniques for generating data transformation rules needed for the data structure normalization.

Keywords: Reverse Engineering, Database Integration, System Integration, Data Structure Normalization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
7205 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
7204 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: Cloud storage security, sharing storage, attributes, Hash algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
7203 Multimethod Approach to Research in Interlanguage Pragmatics

Authors: Saad Al-Gahtani, Ghassan H Al Shatter

Abstract:

Argument over the use of particular method in interlanguage pragmatics has increased recently. Researchers argued the advantages and disadvantages of each method either natural or elicited. Findings of different studies indicated that the use of one method may not provide enough data to answer all its questions. The current study investigated the validity of using multimethod approach in interlanguage pragmatics to understand the development of requests in Arabic as a second language (Arabic L2). To this end, the study adopted two methods belong to two types of data sources: the institutional discourse (natural data), and the role play (elicited data). Participants were 117 learners of Arabic L2 at the university level, representing four levels (beginners, low-intermediate, highintermediate, and advanced). Results showed that using two or more methods in interlanguage pragmatics affect the size and nature of data.

Keywords: Arabic L2, Development of requests, Interlanguage Pragmatics, Multimethod approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1830
7202 Study of Asphaltene Precipitation İnduced Formation Damage During CO2 Injection for a Malaysian Light Oil

Authors: Sima Sh. Alian, Abdul Aziz Omar, Ali F. Alta'ee, Irzie Hani

Abstract:

In this work, the precipitation of asphaltene from a Malaysian light oil reservoir was studies. A series of experiments were designed and carried out to examine the effect of CO2 injection on asphaltene precipitation. Different pressures of injections were used in Dynamic flooding experiment in order to investigate the effect of pressure versus injection pore volume of CO2. These dynamic displacement tests simulate reservoir condition. Results show that by increasing the pore volume of injected gas asphaltene precipitation will increases, also rise in injection pressure causes less precipitation. Sandstone core plug was used to represent reservoir formation during displacement test; therefore it made it possible to study the effect of present of asphaltene on formation. It is found out that the precipitated asphaltene can reduce permeability and porosity which is not favorable during oil production.

Keywords: Asphaltene, asphaltene precipitation, enhanced oil recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3852
7201 F-IVT Actuation System to Power Artificial Knee Joint

Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo

Abstract:

The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.

Keywords: Active orthoses, actuators, lower extremity exoskeletons, knee joint.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2459
7200 Bail-in Capital: The New Box

Authors: Manu Krishnan, Phil Jacoby

Abstract:

In this paper, we discuss the paradigm shift in bank capital from the “gone concern" to the “going concern" mindset. We then propose a methodology for pricing a product of this shift called Contingent Capital Notes (“CoCos"). The Merton Model can determine a price for credit risk by using the firm-s equity value as a call option on those assets. Our pricing methodology for CoCos also uses the credit spread implied by the Merton Model in a subsequent derivative form created by John Hull et al . Here, a market implied asset volatility is calculated by using observed market CDS spreads. This implied asset volatility is then used to estimate the probability of triggering a predetermined “contingency event" given the distanceto- trigger (DTT). The paper then investigates the effect of varying DTTs and recovery assumptions on the CoCo yield. We conclude with an investment rationale.

Keywords: CoCo, Contingent capital, Bank Capital, Tier1 Capital

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
7199 Design of Integration Security System using XML Security

Authors: Juhan Kim, Soohyung Kim, Kiyoung Moon

Abstract:

In this paper, we design an integration security system that provides authentication service, authorization service, and management service of security data and a unified interface for the management service. The interface is originated from XKMS protocol and is used to manage security data such as XACML policies, SAML assertions and other authentication security data including public keys. The system includes security services such as authentication, authorization and delegation of authentication by employing SAML and XACML based on security data such as authentication data, attributes information, assertions and polices managed with the interface in the system. It also has SAML producer that issues assertions related on the result of the authentication and the authorization services.

Keywords: XML, XML Security, XACML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1429
7198 An Evaluation Model for Semantic Enablement of Virtual Research Environments

Authors: Tristan O'Neill, Trina Myers, Jarrod Trevathan

Abstract:

The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for crossdomain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.

Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
7197 Dimension Reduction of Microarray Data Based on Local Principal Component

Authors: Ali Anaissi, Paul J. Kennedy, Madhu Goyal

Abstract:

Analysis and visualization of microarraydata is veryassistantfor biologists and clinicians in the field of diagnosis and treatment of patients. It allows Clinicians to better understand the structure of microarray and facilitates understanding gene expression in cells. However, microarray dataset is a complex data set and has thousands of features and a very small number of observations. This very high dimensional data set often contains some noise, non-useful information and a small number of relevant features for disease or genotype. This paper proposes a non-linear dimensionality reduction algorithm Local Principal Component (LPC) which aims to maps high dimensional data to a lower dimensional space. The reduced data represents the most important variables underlying the original data. Experimental results and comparisons are presented to show the quality of the proposed algorithm. Moreover, experiments also show how this algorithm reduces high dimensional data whilst preserving the neighbourhoods of the points in the low dimensional space as in the high dimensional space.

Keywords: Linear Dimension Reduction, Non-Linear Dimension Reduction, Principal Component Analysis, Biologists.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
7196 Flagging Critical Components to Prevent Transient Faults in Real-Time Systems

Authors: Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega Sanchez

Abstract:

This paper proposes the use of metrics in design space exploration that highlight where in the structure of the model and at what point in the behaviour, prevention is needed against transient faults. Previous approaches to tackle transient faults focused on recovery after detection. Almost no research has been directed towards preventive measures. But in real-time systems, hard deadlines are performance requirements that absolutely must be met and a missed deadline constitutes an erroneous action and a possible system failure. This paper proposes the use of metrics to assess the system design to flag where transient faults may have significant impact. These tools then allow the design to be changed to minimize that impact, and they also flag where particular design techniques – such as coding of communications or memories – need to be applied in later stages of design.

Keywords: Criticality, Metrics, Real-Time Systems, Transient Faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1341
7195 Heterogeneous Attribute Reduction in Noisy System based on a Generalized Neighborhood Rough Sets Model

Authors: Siyuan Jing, Kun She

Abstract:

Neighborhood Rough Sets (NRS) has been proven to be an efficient tool for heterogeneous attribute reduction. However, most of researches are focused on dealing with complete and noiseless data. Factually, most of the information systems are noisy, namely, filled with incomplete data and inconsistent data. In this paper, we introduce a generalized neighborhood rough sets model, called VPTNRS, to deal with the problem of heterogeneous attribute reduction in noisy system. We generalize classical NRS model with tolerance neighborhood relation and the probabilistic theory. Furthermore, we use the neighborhood dependency to evaluate the significance of a subset of heterogeneous attributes and construct a forward greedy algorithm for attribute reduction based on it. Experimental results show that the model is efficient to deal with noisy data.

Keywords: attribute reduction, incomplete data, inconsistent data, tolerance neighborhood relation, rough sets

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
7194 Social Dimension of Air Transport Sustainable Development

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Air Transport links markets and individuals, making regions more competitive and promoting social and economic development. The assessment of social contribution is the key objective of this paper, focusing on the definition of the components of social dimension and welfare metrics in the national scale. According to a top-down approach, the key dimensions that affect the social welfare are presented. Conventional wisdom is to provide estimations on added value to social issues caused by the air transport development and present the methodology framework for measuring the contribution of transport development in social value chain. Greece is the case study of this paper, providing results from the contribution of air transport infrastructures in national welfare. The application key findings are essential for managers and decision makers to support actions and plans towards economic recovery of an economy presenting strong seasonal characteristics (because of tourism) and suffering from recession.

Keywords: Air transport, social dimension, social coherence, resilient business development, socioeconomic impact.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 957
7193 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN

Authors: Xiangbin Zhu, Wenjuan Zhang

Abstract:

In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.

Keywords: wireless sensor networks, data fusion, mobile agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
7192 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
7191 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
7190 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way

Authors: Roelien Goede

Abstract:

Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.

Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
7189 Kinetics of Polyethylene Terephthalate (PET)and Polystyrene (PS) Dynamic Pyrolysis

Authors: S.M. Al-Salem, P. Lettieri

Abstract:

Thermo-chemical treatment (TCT) such as pyrolysis is getting recognized as a valid route for (i) materials and valuable products and petrochemicals recovery; (ii) waste recycling; and (iii) elemental characterization. Pyrolysis is also receiving renewed attention for its operational, economical and environmental advantages. In this study, samples of polyethylene terephthalate (PET) and polystyrene (PS) were pyrolysed in a microthermobalance reactor (using a thermogravimetric-TGA setup). Both polymers were prepared and conditioned prior to experimentation. The main objective was to determine the kinetic parameters of the depolymerization reactions that occur within the thermal degradation process. Overall kinetic rate constants (ko) and activation energies (Eo) were determined using the general kinetics theory (GKT) method previously used by a number of authors. Fitted correlations were found and validated using the GKT, errors were within ± 5%. This study represents a fundamental step to pave the way towards the development of scaling relationship for the investigation of larger scale reactors relevant to industry.

Keywords: Kinetics, PET, PS, Pyrolysis, Recycling, Petrochemicals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3739
7188 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3093
7187 Experimental Study on Dehumidification Performance of Supersonic Nozzle

Authors: Esam Jassim

Abstract:

Supersonic nozzles are commonly used to purify natural gas in gas processing technology. As an innovated technology, it is employed to overcome the deficit of the traditional method, related to gas dynamics, thermodynamics and fluid dynamics theory. An indoor test rig is built to study the dehumidification process of moisture fluid. Humid air was chosen for the study. The working fluid was circulating in an open loop, which had provision for filtering, metering, and humidifying. A stainless steel supersonic separator is constructed together with the C-D nozzle system. The result shows that dehumidification enhances as NPR increases. This is due to the high intensity in the turbulence caused by the shock formation in the divergent section. Such disturbance strengthens the centrifugal force, pushing more particles toward the near-wall region. In return return, the pressure recovery factor, defined as the ratio of the outlet static pressure of the fluid to its inlet value, decreases with NPR.

Keywords: Supersonic nozzle, dehumidification, particle separation, geometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
7186 Construction Of Decentralized Lifetime Maximizing Tree for Data Aggregation in Wireless Sensor Networks

Authors: Deepali Virmani , Satbir Jain

Abstract:

To meet the demands of wireless sensor networks (WSNs) where data are usually aggregated at a single source prior to transmitting to any distant user, there is a need to establish a tree structure inside any given event region. In this paper , a novel technique to create one such tree is proposed .This tree preserves the energy and maximizes the lifetime of event sources while they are constantly transmitting for data aggregation. The term Decentralized Lifetime Maximizing Tree (DLMT) is used to denote this tree. DLMT features in nodes with higher energy tend to be chosen as data aggregating parents so that the time to detect the first broken tree link can be extended and less energy is involved in tree maintenance. By constructing the tree in such a way, the protocol is able to reduce the frequency of tree reconstruction, minimize the amount of data loss ,minimize the delay during data collection and preserves the energy.

Keywords: branch energy, decentralized, energy level , lifetime, tree energy, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
7185 A Grid-based Neural Network Framework for Multimodal Biometrics

Authors: Sitalakshmi Venkataraman

Abstract:

Recent scientific investigations indicate that multimodal biometrics overcome the technical limitations of unimodal biometrics, making them ideally suited for everyday life applications that require a reliable authentication system. However, for a successful adoption of multimodal biometrics, such systems would require large heterogeneous datasets with complex multimodal fusion and privacy schemes spanning various distributed environments. From experimental investigations of current multimodal systems, this paper reports the various issues related to speed, error-recovery and privacy that impede the diffusion of such systems in real-life. This calls for a robust mechanism that caters to the desired real-time performance, robust fusion schemes, interoperability and adaptable privacy policies. The main objective of this paper is to present a framework that addresses the abovementioned issues by leveraging on the heterogeneous resource sharing capacities of Grid services and the efficient machine learning capabilities of artificial neural networks (ANN). Hence, this paper proposes a Grid-based neural network framework for adopting multimodal biometrics with the view of overcoming the barriers of performance, privacy and risk issues that are associated with shared heterogeneous multimodal data centres. The framework combines the concept of Grid services for reliable brokering and privacy policy management of shared biometric resources along with a momentum back propagation ANN (MBPANN) model of machine learning for efficient multimodal fusion and authentication schemes. Real-life applications would be able to adopt the proposed framework to cater to the varying business requirements and user privacies for a successful diffusion of multimodal biometrics in various day-to-day transactions.

Keywords: Back Propagation, Grid Services, MultimodalBiometrics, Neural Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
7184 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction

Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
7183 A Cultural-Sensitive Approach to Counseling a Samoan Sex Offender

Authors: Byron Malaela Sotiata Seiuli

Abstract:

Sexual violation is any form of sexual violence, including rape, child molestation, incest, and similar forms of non-consensual sexual contact. Much of these acts of violation are perpetuated, but not entirely, by men against women and children. Moetolo is a Samoan term that is used to describe a person who sexually violates another while they or their family are asleep. This paper presents and discusses sexual abuse from a Samoan viewpoint. Insights are drawn from the authors’ counseling engagement with a Samoan sex offender as part of his probation review process. Relevant literature is also engaged to inform and provide interpretation to the therapeutic work carried out. This article seeks to contribute new understanding to patterned responses of some Samoan people to sexual abuse behaviors, and steps to remedy arising concerns with perpetrators seeking reintegration back into their communities.

Keywords: Fa’asamoa, Samoan cultural identity, sexual abuse and recovery, Uputāua therapeutic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
7182 Real-Time Data Stream Partitioning over a Sliding Window in Real-Time Spatial Big Data

Authors: Sana Hamdi, Emna Bouazizi, Sami Faiz

Abstract:

In recent years, real-time spatial applications, like location-aware services and traffic monitoring, have become more and more important. Such applications result dynamic environments where data as well as queries are continuously moving. As a result, there is a tremendous amount of real-time spatial data generated every day. The growth of the data volume seems to outspeed the advance of our computing infrastructure. For instance, in real-time spatial Big Data, users expect to receive the results of each query within a short time period without holding in account the load of the system. But with a huge amount of real-time spatial data generated, the system performance degrades rapidly especially in overload situations. To solve this problem, we propose the use of data partitioning as an optimization technique. Traditional horizontal and vertical partitioning can increase the performance of the system and simplify data management. But they remain insufficient for real-time spatial Big data; they can’t deal with real-time and stream queries efficiently. Thus, in this paper, we propose a novel data partitioning approach for real-time spatial Big data named VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial Big data). This contribution is an implementation of the Matching algorithm for traditional vertical partitioning. We find, firstly, the optimal attribute sequence by the use of Matching algorithm. Then, we propose a new cost model used for database partitioning, for keeping the data amount of each partition more balanced limit and for providing a parallel execution guarantees for the most frequent queries. VPA-RTSBD aims to obtain a real-time partitioning scheme and deals with stream data. It improves the performance of query execution by maximizing the degree of parallel execution. This affects QoS (Quality Of Service) improvement in real-time spatial Big Data especially with a huge volume of stream data. The performance of our contribution is evaluated via simulation experiments. The results show that the proposed algorithm is both efficient and scalable, and that it outperforms comparable algorithms.

Keywords: Real-Time Spatial Big Data, Quality Of Service, Vertical partitioning, Horizontal partitioning, Matching algorithm, Hamming distance, Stream query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1056
7181 A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

Authors: Roberto Sabatini, Terry Moore, Chris Hill

Abstract:

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

Keywords: Global Navigation Satellite Systems (GNSS), Integrity Augmentation, Unmanned Aircraft Systems, Aircraft Based Augmentation, Avionics Based Integrity Augmentation, Safety-Critical Applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244
7180 The Impact of the General Data Protection Regulation on Human Resources Management in Schools

Authors: Alexandra Aslanidou

Abstract:

The General Data Protection Regulation (GDPR), concerning the protection of natural persons within the European Union with regard to the processing of personal data and on the free movement of such data, became applicable in the European Union (EU) on 25 May 2018 and transformed the way personal data were being treated under the Data Protection Directive (DPD) regime, generating sweeping organizational changes to both public sector and business. A social practice that is considerably influenced in the way of its day-to-day operations is Human Resource (HR) management, for which the importance of GDPR cannot be underestimated. That is because HR processes personal data coming in all shapes and sizes from many different systems and sources. The significance of the proper functioning of an HR department, specifically in human-centered, service-oriented environments such as the education field, is decisive due to the fact that HR operations in schools, conducted effectively, determine the quality of the provided services and consequently have a considerable impact on the success of the educational system. The purpose of this paper is to analyze the decisive role that GDPR plays in HR departments that operate in schools and in order to practically evaluate the aftermath of the Regulation during the first months of its applicability; a comparative use cases analysis in five highly dynamic schools, across three EU Member States, was attempted.

Keywords: General data protection regulation, human resource management, educational system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
7179 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia

Authors: Nevine M. Labib, Michael N. Malek

Abstract:

Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.

Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215