Search results for: posture recognition
257 Entrepreneurship and the Discovery and Exploitation of Business Opportunities: Empirical Evidence from the Malawian Tourism Sector
Authors: Aravind Mohan Krishnan
Abstract:
This paper identifies a research gap in the literature on tourism entrepreneurship in Malawi, Africa, and investigates how entrepreneurs from the Malawian tourism sector discover and exploit business opportunities. In particular, the importance of prior experience and business networks in the opportunity development process is debated. Another area of empirical research examined here is the opportunity recognition-venture creation sequence. While Malawi presents fruitful business opportunities, exploiting these opportunities into fully realized business ideas is a real challenge due to the country’s difficult business environment and poor promotional and marketing efforts. The study concludes by calling for further research in Sub-Saharan Africa in order to develop our understanding of entrepreneurship in this (African) context.
Keywords: Tourism, entrepreneurship, Malawi, business opportunities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349256 Input Data Balancing in a Neural Network PM-10 Forecasting System
Authors: Suk-Hyun Yu, Heeyong Kwon
Abstract:
Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.
Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826255 The Resource-Base View of Organization and Innovation: Recognition of Significant Relationship in an Organization
Authors: Francis Deinmodei W. Poazi, Jasmine O. Tamunosiki-Amadi, Maurice Fems
Abstract:
In recent times the resource-based view (RBV) of strategic management has recorded a sizeable attention yet there has not been a considerable scholarly and managerial discourse, debate and attention. As a result, this paper gives special bit of critical reasoning as well as top-notch analyses and relationship between RBV and organizational innovation. The study examines those salient aspects of RBV that basically have the will power in ensuring the organization's capacity to go for innovative capability. In achieving such fit and standpoint, the paper joins other relevant academic discourse and empirical evidence. To this end, a reasonable amount of contributions in setting the ground running for future empirical researches would have been provided. More so, the study is guided and built on the following strength and significance: Firstly, RBV sees resources as heterogeneity which forms a strong point of strength and allows organisations to gain competitive advantage. In order words, competitive advantage can be achieved or delivered to the organization when resources are distinctively utilized in a valuable manner more than the envisaged competitors of the organization. Secondly, RBV is significantly influential in determining the real resources that are available in the organization with a view to locate capabilities within in order to attract more profitability into the organization when applied. Thus, there will be more sustainable growth and success in the ever competitive and emerging market. Thus, to have succinct description of the basic methodologies, the study adopts both qualitative as well as quantitative approach with a view to have a broad samples of opinion in establishing and identifying key and strategic organizational resources to enable managers of resources to gain a competitive advantage as well as generating a sustainable increase and growth in profit. Furthermore, a comparative approach and analysis was used to examine the performance of RBV within the organization. Thus, the following are some of the findings of the study: it is clear that there is a nexus between RBV and growth of competitively viable organizations. More so, in most parts, organizations have heterogeneous resources domiciled in their organizations but not all organizations as it was specifically and intelligently adopting the tenets of RBV to strengthen heterogeneity of resources which allows organisations to gain competitive advantage. Other findings of this study reveal that of managerial perception of RBV with respect to application and transformation of resources to achieve a profitable end. It is against this backdrop, the importance of RBV cannot be overemphasized; the study is strongly convinced and think that RBV view is one focal and distinct approach that is focused on internal to outside strategy which engenders sourcing or generating resources internally as well as having the quest to apply such internally sourced resources diligently to increase or gain competitive advantage.
Keywords: Competitive advantage, innovation, organisation, recognition, resource-based view.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159254 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods
Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo
Abstract:
This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.
Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487253 Investigation of the Tattooed Skin by OCT
Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim
Abstract:
The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.Keywords: mechanical skin damage, optical coherence tomography, tattooed skin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766252 High Impedance Faults Detection Technique Based on Wavelet Transform
Authors: Ming-Ta Yang, Jin-Lung Guan, Jhy-Cherng Gu
Abstract:
The purpose of this paper is to solve the problem of protecting aerial lines from high impedance faults (HIFs) in distribution systems. This investigation successfully applies 3I0 zero sequence current to solve HIF problems. The feature extraction system based on discrete wavelet transform (DWT) and the feature identification technique found on statistical confidence are then applied to discriminate effectively between the HIFs and the switch operations. Based on continuous wavelet transform (CWT) pattern recognition of HIFs is proposed, also. Staged fault testing results demonstrate that the proposed wavelet based algorithm is feasible performance well.Keywords: Continuous wavelet transform, discrete wavelet transform, high impedance faults, statistical confidence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2324251 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.
Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359250 Enhanced Traffic Light Detection Method Using Geometry Information
Authors: Changhwan Choi, Yongwan Park
Abstract:
In this paper, we propose a method that allows faster and more accurate detection of traffic lights by a vision sensor during driving, DGPS is used to obtain physical location of a traffic light, extract from the image information of the vision sensor only the traffic light area at this location and ascertain if the sign is in operation and determine its form. This method can solve the problem in existing research where low visibility at night or reflection under bright light makes it difficult to recognize the form of traffic light, thus making driving unstable. We compared our success rate of traffic light recognition in day and night road environments. Compared to previous researches, it showed similar performance during the day but 50% improvement at night.
Keywords: Traffic light, Intelligent vehicle, Night, Detection, DGPS (Differential Global Positioning System).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418249 Bangla Vowel Characterization Based on Analysis by Synthesis
Authors: Syed Akhter Hossain, M. Lutfar Rahman, Farruk Ahmed
Abstract:
Bangla Vowel characterization determines the spectral properties of Bangla vowels for efficient synthesis as well as recognition of Bangla vowels. In this paper, Bangla vowels in isolated word have been analyzed based on speech production model within the framework of Analysis-by-Synthesis. This has led to the extraction of spectral parameters for the production model in order to produce different Bangla vowel sounds. The real and synthetic spectra are compared and a weighted square error has been computed along with the error in the formant bandwidths for efficient representation of Bangla vowels. The extracted features produced good representation of targeted Bangla vowel. Such a representation also plays essential role in low bit rate speech coding and vocoders.
Keywords: Speech, vowel, formant, synthesis, spectrum, LPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371248 Impairments Correction of Six-Port Based Millimeter-Wave Radar
Authors: Dan Ohev Zion, Alon Cohen
Abstract:
In recent years, the presence of short-range millimeter-wave radar in civil application has increased significantly. Autonomous driving, security, 3D imaging and high data rate communication systems are a few examples. The next challenge is the integration inside small form-factor devices, such as smartphones (e.g. gesture recognition). The main challenge is implementation of a truly low-power, low-complexity high-resolution radar. The most popular approach is the Frequency Modulated Continuous Wave (FMCW) radar, with an analog multiplication front-end. In this paper, we present an approach for adaptive estimation and correction of impairments of such front-end, specifically implemented using the Six-Port Device (SPD) as the multiplier element. The proposed algorithm was simulated and implemented on a 60 GHz radar lab prototype.Keywords: Radar, millimeter-wave, six-port, FMCW Radar, IQ mismatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486247 A Novel Technique for Ferroresonance Identification in Distribution Networks
Authors: G. Mokryani, M. R. Haghifam, J. Esmaeilpoor
Abstract:
Happening of Ferroresonance phenomenon is one of the reasons of consuming and ruining transformers, so recognition of Ferroresonance phenomenon has a special importance. A novel method for classification of Ferroresonance presented in this paper. Using this method Ferroresonance can be discriminate from other transients such as capacitor switching, load switching, transformer switching. Wavelet transform is used for decomposition of signals and Competitive Neural Network used for classification. Ferroresonance data and other transients was obtained by simulation using EMTP program. Using Daubechies wavelet transform signals has been decomposed till six levels. The energy of six detailed signals that obtained by wavelet transform are used for training and trailing Competitive Neural Network. Results show that the proposed procedure is efficient in identifying Ferroresonance from other events.
Keywords: Competitive Neural Network, Ferroresonance, EMTP program, Wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424246 Skin Detection using Histogram depend on the Mean Shift Algorithm
Authors: Soo- Young Ye, Ki-Gon Nam, Ki-Won Byun
Abstract:
In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.Keywords: Skin region detection, mean shift, histogram approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264245 Review and Experiments on SDMSCue
Authors: Ashraf Anwar
Abstract:
In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1373244 Evaluation of Fuzzy ARTMAP with DBSCAN in VLSI Application
Authors: K. A. Sumithradevi, Vijayalakshmi. M. N., Annamma Abraham., Dr. Vasanta
Abstract:
The various applications of VLSI circuits in highperformance computing, telecommunications, and consumer electronics has been expanding progressively, and at a very hasty pace. This paper describes a new model for partitioning a circuit using DBSCAN and fuzzy ARTMAP neural network. The first step is concerned with feature extraction, where we had make use DBSCAN algorithm. The second step is the classification and is composed of a fuzzy ARTMAP neural network. The performance of both approaches is compared using benchmark data provided by MCNC standard cell placement benchmark netlists. Analysis of the investigational results proved that the fuzzy ARTMAP with DBSCAN model achieves greater performance then only fuzzy ARTMAP in recognizing sub-circuits with lowest amount of interconnections between them The recognition rate using fuzzy ARTMAP with DBSCAN is 97.7% compared to only fuzzy ARTMAP.Keywords: VLSI, Circuit partitioning, DBSCAN, fuzzyARTMAP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463243 Corporate Governance in Network Marketing Organizations: The Role of Ethics and CSR
Authors: Venugopal Kummamuru
Abstract:
Corporate Governance (CG) is of utmost importance for running a company ethically. It is essential for the growth and success of the corporation. It is intended to increase the accountability of an organization to the larger context of the business environment. The general principles of CG include and are related to Shareholder recognition, Stakeholder interests, and focus on Corporate Social Responsibility (CSR), Clear Board responsibilities, Ethical behavior, and Business transparency. Network Marketing Organizations (NMOs) focus on marketing through direct-sales using people who are associated with the organization but are not their employees. This paper tries to study the importance of Ethics and CSR in an NMO and suggest a basic guideline for CG in NMO(s). This paper could be used as a basis or starting point for conducting an in-depth research to understand the difference in CG practices between NMO(s) and other organizations and define a standard set of guidelines for CG practice.
Keywords: Corporate governance, corporate responsibility, direct selling, network marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078242 Model Discovery and Validation for the Qsar Problem using Association Rule Mining
Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu
Abstract:
There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788241 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals
Authors: Katsumi Hirata
Abstract:
To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.
Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437240 Key Frames Extraction for Sign Language Video Analysis and Recognition
Authors: Jaroslav Polec, Petra Heribanová, Tomáš Hirner
Abstract:
In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.Keywords: Key frame, video, quality, metric, MSE, MSAD, SSIM, VQM, sign language, finger alphabet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032239 Intelligibility of Cued Speech in Video
Authors: P. Heribanová, J. Polec, S. Ondrušová, M. Hosťovecký
Abstract:
This paper discusses the cued speech recognition methods in videoconference. Cued speech is a specific gesture language that is used for communication between deaf people. We define the criteria for sentence intelligibility according to answers of testing subjects (deaf people). In our tests we use 30 sample videos coded by H.264 codec with various bit-rates and various speed of cued speech. Additionally, we define the criteria for consonant sign recognizability in single-handed finger alphabet (dactyl) analogically to acoustics. We use another 12 sample videos coded by H.264 codec with various bit-rates in four different video formats. To interpret the results we apply the standard scale for subjective video quality evaluation and the percentual evaluation of intelligibility as in acoustics. From the results we construct the minimum coded bit-rate recommendations for every spatial resolution.Keywords: cued speech, inteligibility, logatom, video
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530238 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401237 Persian Printed Numerals Classification Using Extended Moment Invariants
Authors: Hamid Reza Boveiri
Abstract:
Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919236 A Neural Model of Object Naming
Authors: Alessio Plebe
Abstract:
One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.
Keywords: Auditory cortex, object recognition, self-organizingmaps
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385235 Pervasive Computing in Healthcare Systems
Authors: Elham Rastegari, Amirmasood Rahmani, Saeed Setayeshi
Abstract:
The hospital and the health-care center of a community, as a place for people-s life-care and health-care settings, must provide more and better services for patients or residents. After Establishing Electronic Medical Record (EMR) system -which is a necessity- in the hospital, providing pervasive services is a further step. Our objective in this paper is to use pervasive computing in a case study of healthcare, based on EMR database that coordinates application services over network to form a service environment for medical and health-care. Our method also categorizes the hospital spaces into 3 spaces: Public spaces, Private spaces and Isolated spaces. Although, there are many projects about using pervasive computing in healthcare, but all of them concentrate on the disease recognition, designing smart cloths, or provide services only for patient. The proposed method is implemented in a hospital. The obtained results show that it is suitable for our purpose.Keywords: Pervasive computing, RFID, Health-care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008234 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images
Authors: G.Wiselin Jiji, L.Ganesan
Abstract:
Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698233 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model
Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi
Abstract:
Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633232 Comparison of the H-Index of Researchers of Google Scholar and Scopus
Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari
Abstract:
H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.Keywords: Google Scholar, H-index, Scopus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151231 The Impact of NICTBB in Facilitating the E-Services and M-Services in Tanzania
Authors: S. Pazi, C. Chatwin
Abstract:
ICT services are a key element of communications and important for socio-economic development. In recognition of the importance of this, the Tanzanian Government started to implement a National ICT Broadband Infrastructure Fibre Optic Backbone (NICTBB) in 2009; this development was planned to be implemented in four phases using an optical dense wavelength division multiplexing (DWDM) network technology in collaboration with the Chinese Government through the Chinese International Telecommunications Construction Corporation (CITCC) under a bilateral agreement. This paper briefly explores the NICTBB network technologies implementation, operations and Internet bandwidth costs. It also provides an in depth assessment of the delivery of ICT services such as e-services and m-services in both urban and rural areas following commissioning of the NICTBB system. Following quantitative and qualitative approaches, the study shows that there have been significant improvements in utilization efficiency, effectiveness and the reliability of the ICT service such as e-services and m-services the NICTCBB was commissioned.
Keywords: NICTBB, DWDM, Optic Fibre, Internet, ICT services, e-services, m-services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3221230 Detection and Pose Estimation of People in Images
Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi
Abstract:
Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300229 Modeling User Behaviour by Planning
Authors: Alfredo Milani, Silvia Suriani
Abstract:
A model of user behaviour based automated planning is introduced in this work. The behaviour of users of web interactive systems can be described in term of a planning domain encapsulating the timed actions patterns representing the intended user profile. The user behaviour recognition is then posed as a planning problem where the goal is to parse a given sequence of user logs of the observed activities while reaching a final state. A general technique for transforming a timed finite state automata description of the behaviour into a numerical parameter planning model is introduced. Experimental results show that the performance of a planning based behaviour model is effective and scalable for real world applications. A major advantage of the planning based approach is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.Keywords: User behaviour, Timed Transition Automata, Automated Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347228 Perception of Farmers and Agricultural Professionals on Changes in Productivity and Water Resources in Ethiopia
Authors: D. Mojo, Y. Todo, P. Matous
Abstract:
In this paper, perceptions of actors on changes in crop productivity, quantity and quality of water, and determinants of their perception are analyzed using descriptive statistics and ordered logit model. Data collected from 297 Ethiopian farmers and 103 agricultural professionals from December 2009 to January 2010 are employed. Results show that the majority of the farmers and professionals recognized decline in water resources, reasoning climate changes and soil erosion as some of the causes. However, there is a variation in views on changes in productivity. The household asset, education level, age and geographical positions are found to affect farmers- perception on changes in crop productivity. But, the study underlines that there is no evidence that farmers- economic status, age, or education level affects recognition of degradation of water resources. Thus, more focus shall be given on providing them different coping mechanisms and alternative resource conserving technologies than educating about the problems.Keywords: Agricultural Sustainability, Ethiopia, Perception, Productivity, Water Resources
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690