Search results for: Maastricht convergence criteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1286

Search results for: Maastricht convergence criteria

686 Decision Maturity Framework: Introducing Maturity In Heuristic Search

Authors: Ayed Salman, Fawaz Al-Anzi, Aseel Al-Minayes

Abstract:

Heuristics-based search methodologies normally work on searching a problem space of possible solutions toward finding a “satisfactory" solution based on “hints" estimated from the problem-specific knowledge. Research communities use different types of methodologies. Unfortunately, most of the times, these hints are immature and can lead toward hindering these methodologies by a premature convergence. This is due to a decrease of diversity in search space that leads to a total implosion and ultimately fitness stagnation of the population. In this paper, a novel Decision Maturity framework (DMF) is introduced as a solution to this problem. The framework simply improves the decision on the direction of the search by materializing hints enough before using them. Ideas from this framework are injected into the particle swarm optimization methodology. Results were obtained under both static and dynamic environment. The results show that decision maturity prevents premature converges to a high degree.

Keywords: Heuristic Search, hints, Particle Swarm Optimization, Decision Maturity Framework.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
685 Two Iterative Algorithms to Compute the Bisymmetric Solution of the Matrix Equation A1X1B1 + A2X2B2 + ... + AlXlBl = C

Authors: A.Tajaddini

Abstract:

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem l i=1 AiXiBi−CF = minXi∈BRni×ni l i=1 AiXiBi−CF and the matrix nearness problem [X1, X2, ..., Xl] = min[X1,X2,...,Xl]∈SE [X1,X2, ...,Xl] − [X1, X2, ..., Xl]F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution set of above matrix equation or minimum residual problem. These matrix iterative methods have faster convergence rate and higher accuracy than former methods. Paige’s algorithms are used as the frame method for deriving these matrix iterative methods. The numerical example is used to illustrate the efficiency of these new methods.

Keywords: Bisymmetric matrices, Paige’s algorithms, Least square.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
684 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
683 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

Authors: Mohammad Reza Ghasemi, Amin Ghorbani

Abstract:

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.

Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
682 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
681 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
680 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Alternative Approach

Authors: Mário C. Ricci

Abstract:

An alternative iterative computational procedure is proposed for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. An accurate method for curvature radii at contacts with inner and outer raceways in the direction of the motion is used. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections.

Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
679 Networked Implementation of Milling Stability Optimization with Bayesian Learning

Authors: C. Ramsauer, J. Karandikar, D. Leitner, T. Schmitz, F. Bleicher

Abstract:

Machining instability, or chatter, can impose an important limitation to discrete part machining. In this work, a networked implementation of milling stability optimization with Bayesian learning is presented. The milling process was monitored with a wireless sensory tool holder instrumented with an accelerometer at the TU Wien, Vienna, Austria. The recorded data from a milling test cut were used to classify the cut as stable or unstable based on a frequency analysis. The test cut result was used in a Bayesian stability learning algorithm at the University of Tennessee, Knoxville, Tennessee, USA. The algorithm calculated the probability of stability as a function of axial depth of cut and spindle speed based on the test result and recommended parameters for the next test cut. The iterative process between two transatlantic locations was repeated until convergence to a stable optimal process parameter set was achieved.

Keywords: Bayesian learning, instrumented tool holder, machining stability, optimization strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 539
678 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: Film condensation, heat transfer, plain tube, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000
677 Application of a New Hybrid Optimization Algorithm on Cluster Analysis

Authors: T. Niknam, M. Nayeripour, B.Bahmani Firouzi

Abstract:

Clustering techniques have received attention in many areas including engineering, medicine, biology and data mining. The purpose of clustering is to group together data points, which are close to one another. The K-means algorithm is one of the most widely used techniques for clustering. However, K-means has two shortcomings: dependency on the initial state and convergence to local optima and global solutions of large problems cannot found with reasonable amount of computation effort. In order to overcome local optima problem lots of studies done in clustering. This paper is presented an efficient hybrid evolutionary optimization algorithm based on combining Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO), called PSO-ACO, for optimally clustering N object into K clusters. The new PSO-ACO algorithm is tested on several data sets, and its performance is compared with those of ACO, PSO and K-means clustering. The simulation results show that the proposed evolutionary optimization algorithm is robust and suitable for handing data clustering.

Keywords: Ant Colony Optimization (ACO), Data clustering, Hybrid evolutionary optimization algorithm, K-means clustering, Particle Swarm Optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
676 Analysis of Noise Level Effects on Signal-Averaged Electrocardiograms

Authors: Chun-Cheng Lin

Abstract:

Noise level has critical effects on the diagnostic performance of signal-averaged electrocardiogram (SAECG), because the true starting and end points of QRS complex would be masked by the residual noise and sensitive to the noise level. Several studies and commercial machines have used a fixed number of heart beats (typically between 200 to 600 beats) or set a predefined noise level (typically between 0.3 to 1.0 μV) in each X, Y and Z lead to perform SAECG analysis. However different criteria or methods used to perform SAECG would cause the discrepancies of the noise levels among study subjects. According to the recommendations of 1991 ESC, AHA and ACC Task Force Consensus Document for the use of SAECG, the determinations of onset and offset are related closely to the mean and standard deviation of noise sample. Hence this study would try to perform SAECG using consistent root-mean-square (RMS) noise levels among study subjects and analyze the noise level effects on SAECG. This study would also evaluate the differences between normal subjects and chronic renal failure (CRF) patients in the time-domain SAECG parameters. The study subjects were composed of 50 normal Taiwanese and 20 CRF patients. During the signal-averaged processing, different RMS noise levels were adjusted to evaluate their effects on three time domain parameters (1) filtered total QRS duration (fQRSD), (2) RMS voltage of the last QRS 40 ms (RMS40), and (3) duration of the low amplitude signals below 40 μV (LAS40). The study results demonstrated that the reduction of RMS noise level can increase fQRSD and LAS40 and decrease the RMS40, and can further increase the differences of fQRSD and RMS40 between normal subjects and CRF patients. The SAECG may also become abnormal due to the reduction of RMS noise level. In conclusion, it is essential to establish diagnostic criteria of SAECG using consistent RMS noise levels for the reduction of the noise level effects.

Keywords: Signal-averaged electrocardiogram, Ventricular latepotentials, Chronic renal failure, Noise level effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
675 Implicit Eulerian Fluid-Structure Interaction Method for the Modeling of Highly Deformable Elastic Membranes

Authors: Aymen Laadhari, Gábor Székely

Abstract:

This paper is concerned with the development of a fully implicit and purely Eulerian fluid-structure interaction method tailored for the modeling of the large deformations of elastic membranes in a surrounding Newtonian fluid. We consider a simplified model for the mechanical properties of the membrane, in which the surface strain energy depends on the membrane stretching. The fully Eulerian description is based on the advection of a modified surface tension tensor, and the deformations of the membrane are tracked using a level set strategy. The resulting nonlinear problem is solved by a Newton-Raphson method, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the presented method. We show that stability is maintained for significantly larger time steps.

Keywords: Fluid-membrane interaction, stretching, Eulerian, finite element method, Newton, implicit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
674 A Tree Based Association Rule Approach for XML Data with Semantic Integration

Authors: D. Sasikala, K. Premalatha

Abstract:

The use of eXtensible Markup Language (XML) in web, business and scientific databases lead to the development of methods, techniques and systems to manage and analyze XML data. Semi-structured documents suffer due to its heterogeneity and dimensionality. XML structure and content mining represent convergence for research in semi-structured data and text mining. As the information available on the internet grows drastically, extracting knowledge from XML documents becomes a harder task. Certainly, documents are often so large that the data set returned as answer to a query may also be very big to convey the required information. To improve the query answering, a Semantic Tree Based Association Rule (STAR) mining method is proposed. This method provides intentional information by considering the structure, content and the semantics of the content. The method is applied on Reuter’s dataset and the results show that the proposed method outperforms well.

Keywords: Semi--structured Document, Tree based Association Rule (TAR), Semantic Association Rule Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
673 Global GMRES with Deflated Restarting for Families of Shifted Linear Systems

Authors: Jing Meng, Peiyong Zhu, Houbiao Li

Abstract:

Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.

Keywords: Shifted linear systems, global Krylov subspace, GLGMRESIR, GLGMRESIRsh, harmonic Ritz matrix, harmonic Ritz vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
672 Mining Sequential Patterns Using Hybrid Evolutionary Algorithm

Authors: Mourad Ykhlef, Hebah ElGibreen

Abstract:

Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.

Keywords: Genetic Algorithm, Hybrid Evolutionary Algorithm, Particle Swarm Optimization algorithm, Sequential Pattern mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
671 Intelligent Path Tracking Hybrid Fuzzy Controller for a Unicycle-Type Differential Drive Robot

Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Muhammad Moaz

Abstract:

In this paper, we discuss the performance of applying hybrid spiral dynamic bacterial chemotaxis (HSDBC) optimisation algorithm on an intelligent controller for a differential drive robot. A unicycle class of differential drive robot is utilised to serve as a basis application to evaluate the performance of the HSDBC algorithm. A hybrid fuzzy logic controller is developed and implemented for the unicycle robot to follow a predefined trajectory. Trajectories of various frictional profiles and levels were simulated to evaluate the performance of the robot at different operating conditions. Controller gains and scaling factors were optimised using HSDBC and the performance is evaluated in comparison to previously adopted optimisation algorithms. The HSDBC has proven its feasibility in achieving a faster convergence toward the optimal gains and resulted in a superior performance.

Keywords: Differential drive robot, hybrid fuzzy controller, optimization, path tracking, unicycle robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2625
670 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
669 Unsteady 3D Post-Stall Aerodynamics Accounting for Effective Loss in Camber Due to Flow Separation

Authors: Aritras Roy, Rinku Mukherjee

Abstract:

The current study couples a quasi-steady Vortex Lattice Method and a camber correcting technique, ‘Decambering’ for unsteady post-stall flow prediction. The wake is force-free and discrete such that the wake lattices move with the free-stream once shed from the wing. It is observed that the time-averaged unsteady coefficient of lift sees a relative drop at post-stall angles of attack in comparison to its steady counterpart for some angles of attack. Multiple solutions occur at post-stall and three different algorithms to choose solutions in these regimes show both unsteadiness and non-convergence of the iterations. The distribution of coefficient of lift on the wing span also shows sawtooth. Distribution of vorticity changes both along span and in the direction of the free-stream as the wake develops over time with distinct roll-up, which increases with time.

Keywords: Post-stall, unsteady, wing, aerodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
668 Simulation and Validation of Spur Gear Heated by Induction using 3d Model

Authors: A. Chebak, N. Barka, A. Menou, J. Brousseau, D. S. Ramdenee

Abstract:

This paper presents the study of hardness profile of spur gear heated by induction heating process in function of the machine parameters, such as the power (kW), the heating time (s) and the generator frequency (kHz). The global work is realized by 3D finite-element simulation applied to the process by coupling and resolving the electromagnetic field and the heat transfer problems, and it was performed in three distinguished steps. First, a Comsol 3D model was built using an adequate formulation and taking into account the material properties and the machine parameters. Second, the convergence study was conducted to optimize the mesh. Then, the surface temperatures and the case depths were deeply analyzed in function of the initial current density and the heating time in medium frequency (MF) and high frequency (HF) heating modes and the edge effect were studied. Finally, the simulations results are validated using experimental tests.

Keywords: Induction heating, simulation, experimental validation, 3D model, hardness profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
667 An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

Authors: Y. Mohseniahouei, K. Abdella, M. Pollanen

Abstract:

In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.

Keywords: Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
666 Seismic Behavior of Self-Balancing Post-Tensioned Reinforced Concrete Spatial Structure

Authors: Mircea Pastrav, Horia Constantinescu

Abstract:

The construction industry is currently trying to develop sustainable reinforced concrete structures. In trying to aid in the effort, the research presented in this paper aims to prove the efficiency of modified special hybrid moment frames composed of discretely jointed precast and post-tensioned concrete members. This aim is due to the fact that current design standards do not cover the spatial design of moment frame structures assembled by post-tensioning with special hybrid joints. This lack of standardization is coupled with the fact that previous experimental programs, available in scientific literature, deal mainly with plane structures and offer little information regarding spatial behavior. A spatial model of a modified hybrid moment frame is experimentally analyzed. The experimental results of a natural scale model test of a corner column-beams sub-structure, cut from an actual multilevel building tested to seismic type loading are presented in order to highlight the behavior of this type of structure. The test is performed under alternative cycles of imposed lateral displacements, up to a storey drift ratio of 0.035. Seismic response of the spatial model is discussed considering the acceptance criteria for reinforced concrete frame structures designed based on experimental tests, as well as some of its major sustainability features. The results obtained show an overall excellent behavior of the system. The joint detailing allows for quick and cheap repairs after an accidental event and a self-balancing behavior of the system that ensures it can be used almost immediately after an accidental event it.

Keywords: Modified hybrid joint, seismic type loading response, self-balancing structure, acceptance criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1158
665 Trajectory-Based Modified Policy Iteration

Authors: R. Sharma, M. Gopal

Abstract:

This paper presents a new problem solving approach that is able to generate optimal policy solution for finite-state stochastic sequential decision-making problems with high data efficiency. The proposed algorithm iteratively builds and improves an approximate Markov Decision Process (MDP) model along with cost-to-go value approximates by generating finite length trajectories through the state-space. The approach creates a synergy between an approximate evolving model and approximate cost-to-go values to produce a sequence of improving policies finally converging to the optimal policy through an intelligent and structured search of the policy space. The approach modifies the policy update step of the policy iteration so as to result in a speedy and stable convergence to the optimal policy. We apply the algorithm to a non-holonomic mobile robot control problem and compare its performance with other Reinforcement Learning (RL) approaches, e.g., a) Q-learning, b) Watkins Q(λ), c) SARSA(λ).

Keywords: Markov Decision Process (MDP), Mobile robot, Policy iteration, Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
664 Computer Aided Design Solution Based on Genetic Algorithms for FMEA and Control Plan in Automotive Industry

Authors: Nadia Belu, Laurentiu M. Ionescu, Agnieszka Misztal

Abstract:

In this paper we propose a computer-aided solution with Genetic Algorithms in order to reduce the drafting of reports: FMEA analysis and Control Plan required in the manufacture of the product launch and improved knowledge development teams for future projects. The solution allows to the design team to introduce data entry required to FMEA. The actual analysis is performed using Genetic Algorithms to find optimum between RPN risk factor and cost of production. A feature of Genetic Algorithms is that they are used as a means of finding solutions for multi criteria optimization problems. In our case, along with three specific FMEA risk factors is considered and reduce production cost. Analysis tool will generate final reports for all FMEA processes. The data obtained in FMEA reports are automatically integrated with other entered parameters in Control Plan. Implementation of the solution is in the form of an application running in an intranet on two servers: one containing analysis and plan generation engine and the other containing the database where the initial parameters and results are stored. The results can then be used as starting solutions in the synthesis of other projects. The solution was applied to welding processes, laser cutting and bending to manufacture chassis for buses. Advantages of the solution are efficient elaboration of documents in the current project by automatically generating reports FMEA and Control Plan using multiple criteria optimization of production and build a solid knowledge base for future projects. The solution which we propose is a cheap alternative to other solutions on the market using Open Source tools in implementation.

Keywords: Automotive industry, control plan, FMEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2875
663 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
662 Improving Image Segmentation Performance via Edge Preserving Regularization

Authors: Ying-jie Zhang, Li-ling Ge

Abstract:

This paper presents an improved image segmentation model with edge preserving regularization based on the piecewise-smooth Mumford-Shah functional. A level set formulation is considered for the Mumford-Shah functional minimization in segmentation, and the corresponding partial difference equations are solved by the backward Euler discretization. Aiming at encouraging edge preserving regularization, a new edge indicator function is introduced at level set frame. In which all the grid points which is used to locate the level set curve are considered to avoid blurring the edges and a nonlinear smooth constraint function as regularization term is applied to smooth the image in the isophote direction instead of the gradient direction. In implementation, some strategies such as a new scheme for extension of u+ and u- computation of the grid points and speedup of the convergence are studied to improve the efficacy of the algorithm. The resulting algorithm has been implemented and compared with the previous methods, and has been proved efficiently by several cases.

Keywords: Energy minimization, image segmentation, level sets, edge regularization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
661 The Evaluation of Subclinical Hypothyroidism in Children with Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Cardiovascular (CV) pathology is one of the expected consequences of excessive fat gain. The role of zinc (Zn) in thyroid hormone metabolism (THM) is a matter of debate. Both thyroid stimulating hormone (TSH) and Zn levels are subject to variation in obese individuals. Zn participates in THM. It is closely related to TSH. Since thyroid hormones are required for Zn absorption, hypothyroidism can lead to Zn deficiency and vice versa. Zn exhibits protective effects on CV health and it is inversely correlated with CV markers in childhood obesity. The association between subclinical hypothyroidism (SCHT) and metabolic disorders is under investigation due to its clinical importance. SCHT is defined as the elevated serum TSH levels in the presence of normal free thyroxin (T4) concentrations. The aim of this study is to evaluate the associations between TSH levels and Zn concentrations in SCHT cases detected in morbid obese (MO) children with and without metabolic syndrome (MetS) [(MOMetS+ and MOMetS-)], respectively. 42 children were present in each study group. Informed consent forms were obtained. Tekrdag Namik Kemal University Faculty of Medicine Non-Interventional Clinical Investigations Ethical Committee approved the study protocol. World Health Organization criteria were used for obesity classification. Children with age and sex-dependent body mass index percentile values above 99 were defined as MO. Children exhibiting at least two of MetS criteria were included in MOMetS+ group. Elevated fasting blood glucose, elevated triglycerides (TRG)/decreased high density lipoprotein-cholesterol (HDL-C) concentrations, elevated blood pressure values in addition to central obesity were listed as MetS criteria. Anthropometric measures were recorded. Routine biochemical analyses were performed. In MOMetS- group 13, in MOMetS+ group 15 children were with SCHT. Statistical analyses were performed. p < 0.05 was accepted as statistically significant. In MOMetS- and MOMetS+ groups, TSH levels were 4.1 ± 2.9 mU/L and 4.6 ± 3.1 mU/L, respectively. Corresponding values for SCHT cases were 7.3 ± 3.1 mU/L and 8.0 ± 2.7 mU/L. Free T4 levels were within normal limits. Zn concentrations were negatively correlated with TSH levels in both groups. Significant negative correlation calculated in MOMetS+ group (r = -0.909; p < 0.001) was much stronger than that found in MOMetS- group (r = -0.706; p < 0.05). This strong correlation (r = -0.909; p < 0.001) calculated for cases with SCHT in MOMetS+ group was much lower in the same group (r = -0.793; p < 0.001) when all cases were considered. In conclusion, the presence of strong correlations between TSH and Zn in SCHT in both MOMetS- and MOMetS+ groups have pointed out that MO children were under the threat of CV pathologies. The detection of the much stronger correlation in MOMetS+ group in comparison with the correlation found in MOMetS- group was the indicator of greater CV risk due to the presence of MetS. In MOMetS+ group, correlation in SCHT cases found higher than correlation calculated for all cases confirmed much higher CV risk due to the contribution of SCHT.

Keywords: Cardiovascular risk, child morbid obesity, subclinical hypothyroidism, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239
660 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
659 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
658 A Decision Support Tool for Evaluating Mobility Projects

Authors: H. Omrani, P. Gerber

Abstract:

Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).

Keywords: Decision support tool, hybrid approach, urban mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1994
657 Elephant Herding Optimization for Service Selection in QoS-Aware Web Service Composition

Authors: Samia Sadouki Chibani, Abdelkamel Tari

Abstract:

Web service composition combines available services to provide new functionality. Given the number of available services with similar functionalities and different non functional aspects (QoS), the problem of finding a QoS-optimal web service composition is considered as an optimization problem belonging to NP-hard class. Thus, an optimal solution cannot be found by exact algorithms within a reasonable time. In this paper, a meta-heuristic bio-inspired is presented to address the QoS aware web service composition; it is based on Elephant Herding Optimization (EHO) algorithm, which is inspired by the herding behavior of elephant group. EHO is characterized by a process of dividing and combining the population to sub populations (clan); this process allows the exchange of information between local searches to move toward a global optimum. However, with Applying others evolutionary algorithms the problem of early stagnancy in a local optimum cannot be avoided. Compared with PSO, the results of experimental evaluation show that our proposition significantly outperforms the existing algorithm with better performance of the fitness value and a fast convergence.

Keywords: Elephant herding optimization, web service composition, bio-inspired algorithms, QoS optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1032