Search results for: job recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 811

Search results for: job recognition

241 Model Discovery and Validation for the Qsar Problem using Association Rule Mining

Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu

Abstract:

There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.

Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
240 Estimating 3D-Position of A Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals

Authors: Katsumi Hirata

Abstract:

To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances.

Keywords: 4-point detection, a stationary random acoustic source, auto- and cross-bispectra, estimation of 3D-position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
239 Key Frames Extraction for Sign Language Video Analysis and Recognition

Authors: Jaroslav Polec, Petra Heribanová, Tomáš Hirner

Abstract:

In this paper we proposed a method for finding video frames representing one sign in the finger alphabet. The method is based on determining hands location, segmentation and the use of standard video quality evaluation metrics. Metric calculation is performed only in regions of interest. Sliding mechanism for finding local extrema and adaptive threshold based on local averaging is used for key frames selection. The success rate is evaluated by recall, precision and F1 measure. The method effectiveness is compared with metrics applied to all frames. Proposed method is fast, effective and relatively easy to realize by simple input video preprocessing and subsequent use of tools designed for video quality measuring.

Keywords: Key frame, video, quality, metric, MSE, MSAD, SSIM, VQM, sign language, finger alphabet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
238 Intelligibility of Cued Speech in Video

Authors: P. Heribanová, J. Polec, S. Ondrušová, M. Hosťovecký

Abstract:

This paper discusses the cued speech recognition methods in videoconference. Cued speech is a specific gesture language that is used for communication between deaf people. We define the criteria for sentence intelligibility according to answers of testing subjects (deaf people). In our tests we use 30 sample videos coded by H.264 codec with various bit-rates and various speed of cued speech. Additionally, we define the criteria for consonant sign recognizability in single-handed finger alphabet (dactyl) analogically to acoustics. We use another 12 sample videos coded by H.264 codec with various bit-rates in four different video formats. To interpret the results we apply the standard scale for subjective video quality evaluation and the percentual evaluation of intelligibility as in acoustics. From the results we construct the minimum coded bit-rate recommendations for every spatial resolution.

Keywords: cued speech, inteligibility, logatom, video

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
237 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification

Authors: Xiao Chen, Xiaoying Kong, Min Xu

Abstract:

This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.

Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
236 Persian Printed Numerals Classification Using Extended Moment Invariants

Authors: Hamid Reza Boveiri

Abstract:

Classification of Persian printed numeral characters has been considered and a proposed system has been introduced. In representation stage, for the first time in Persian optical character recognition, extended moment invariants has been utilized as characters image descriptor. In classification stage, four different classifiers namely minimum mean distance, nearest neighbor rule, multi layer perceptron, and fuzzy min-max neural network has been used, which first and second are traditional nonparametric statistical classifier. Third is a well-known neural network and forth is a kind of fuzzy neural network that is based on utilizing hyperbox fuzzy sets. Set of different experiments has been done and variety of results has been presented. The results showed that extended moment invariants are qualified as features to classify Persian printed numeral characters.

Keywords: Extended moment invariants, optical characterrecognition, Persian numerals classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
235 A Neural Model of Object Naming

Authors: Alessio Plebe

Abstract:

One astonishing capability of humans is to recognize thousands of different objects visually, and to learn the semantic association between those objects and words referring to them. This work is an attempt to build a computational model of such capacity,simulating the process by which infants learn how to recognize objects and words through exposure to visual stimuli and vocal sounds.One of the main fact shaping the brain of a newborn is that lights and colors come from entities of the world. Gradually the visual system learn which light sensations belong to same entities, despite large changes in appearance. This experience is common between humans and several other mammals, like non-human primates. But humans only can recognize a huge variety of objects, most manufactured by himself, and make use of sounds to identify and categorize them. The aim of this model is to reproduce these processes in a biologically plausible way, by reconstructing the essential hierarchy of cortical circuits on the visual and auditory neural paths.

Keywords: Auditory cortex, object recognition, self-organizingmaps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
234 Pervasive Computing in Healthcare Systems

Authors: Elham Rastegari, Amirmasood Rahmani, Saeed Setayeshi

Abstract:

The hospital and the health-care center of a community, as a place for people-s life-care and health-care settings, must provide more and better services for patients or residents. After Establishing Electronic Medical Record (EMR) system -which is a necessity- in the hospital, providing pervasive services is a further step. Our objective in this paper is to use pervasive computing in a case study of healthcare, based on EMR database that coordinates application services over network to form a service environment for medical and health-care. Our method also categorizes the hospital spaces into 3 spaces: Public spaces, Private spaces and Isolated spaces. Although, there are many projects about using pervasive computing in healthcare, but all of them concentrate on the disease recognition, designing smart cloths, or provide services only for patient. The proposed method is implemented in a hospital. The obtained results show that it is suitable for our purpose.

Keywords: Pervasive computing, RFID, Health-care.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3015
233 Unsupervised Segmentation using Fuzzy Logicbased Texture Spectrum for MRI Brain Images

Authors: G.Wiselin Jiji, L.Ganesan

Abstract:

Textures are replications, symmetries and combinations of various basic patterns, usually with some random variation one of the gray-level statistics. This article proposes a new approach to Segment texture images. The proposed approach proceeds in 2 stages. First, in this method, local texture information of a pixel is obtained by fuzzy texture unit and global texture information of an image is obtained by fuzzy texture spectrum. The purpose of this paper is to demonstrate the usefulness of fuzzy texture spectrum for texture Segmentation. The 2nd Stage of the method is devoted to a decision process, applying a global analysis followed by a fine segmentation, which is only focused on ambiguous points. The above Proposed approach was applied to brain image to identify the components of brain in turn, used to locate the brain tumor and its Growth rate.

Keywords: Fuzzy Texture Unit, Fuzzy Texture Spectrum, andPattern Recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
232 Facial Expressions Animation and Lip Tracking Using Facial Characteristic Points and Deformable Model

Authors: Hadi Seyedarabi, Ali Aghagolzadeh, Sohrab Khanmohammadi

Abstract:

Face and facial expressions play essential roles in interpersonal communication. Most of the current works on the facial expression recognition attempt to recognize a small set of the prototypic expressions such as happy, surprise, anger, sad, disgust and fear. However the most of the human emotions are communicated by changes in one or two of discrete features. In this paper, we develop a facial expressions synthesis system, based on the facial characteristic points (FCP's) tracking in the frontal image sequences. Selected FCP's are automatically tracked using a crosscorrelation based optical flow. The proposed synthesis system uses a simple deformable facial features model with a few set of control points that can be tracked in original facial image sequences.

Keywords: Deformable face model, facial animation, facialcharacteristic points, optical flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
231 A Deep Reinforcement Learning-Based Secure Framework against Adversarial Attacks in Power System

Authors: Arshia Aflaki, Hadis Karimipour, Anik Islam

Abstract:

Generative Adversarial Attacks (GAAs) threaten critical sectors, ranging from fingerprint recognition to industrial control systems. Existing Deep Learning (DL) algorithms are not robust enough against this kind of cyber-attack. As one of the most critical industries in the world, the power grid is not an exception. In this study, a Deep Reinforcement Learning-based (DRL) framework assisting the DL model to improve the robustness of the model against GAAs is proposed. Real-world smart grid stability data, as an IIoT dataset, test our method and improve the classification accuracy of a DL model from around 57% to 96%.

Keywords: Generative Adversarial Attack, Deep Reinforcement Learning, deep learning, IIoT, Generative Adversarial Networks, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20
230 Comparison of the H-Index of Researchers of Google Scholar and Scopus

Authors: Adian Fatchur Rochim, Abdul Muis, Riri Fitri Sari

Abstract:

H-index has been widely used as a performance indicator of researchers around the world especially in Indonesia. The Government uses Scopus and Google scholar as indexing references in providing recognition and appreciation. However, those two indexing services yield to different H-index values. For that purpose, this paper evaluates the difference of the H-index from those services. Researchers indexed by Webometrics, are used as reference’s data in this paper. Currently, Webometrics only uses H-index from Google Scholar. This paper observed and compared corresponding researchers’ data from Scopus to get their H-index score. Subsequently, some researchers with huge differences in score are observed in more detail on their paper’s publisher. This paper shows that the H-index of researchers in Google Scholar is approximately 2.45 times of their Scopus H-Index. Most difference exists due to the existence of uncertified publishers, which is considered in Google Scholar but not in Scopus.

Keywords: Google Scholar, H-index, Scopus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
229 The Impact of NICTBB in Facilitating the E-Services and M-Services in Tanzania

Authors: S. Pazi, C. Chatwin

Abstract:

ICT services are a key element of communications and important for socio-economic development. In recognition of the importance of this, the Tanzanian Government started to implement a National ICT Broadband Infrastructure Fibre Optic Backbone (NICTBB) in 2009; this development was planned to be implemented in four phases using an optical dense wavelength division multiplexing (DWDM) network technology in collaboration with the Chinese Government through the Chinese International Telecommunications Construction Corporation (CITCC) under a bilateral agreement. This paper briefly explores the NICTBB network technologies implementation, operations and Internet bandwidth costs. It also provides an in depth assessment of the delivery of ICT services such as e-services and m-services in both urban and rural areas following commissioning of the NICTBB system. Following quantitative and qualitative approaches, the study shows that there have been significant improvements in utilization efficiency, effectiveness and the reliability of the ICT service such as e-services and m-services the NICTCBB was commissioned.

Keywords: NICTBB, DWDM, Optic Fibre, Internet, ICT services, e-services, m-services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3226
228 Detection and Pose Estimation of People in Images

Authors: Mousa Mojarrad, Amir Masoud Rahmani, Mehrab Mohebi

Abstract:

Detection, feature extraction and pose estimation of people in images and video is made challenging by the variability of human appearance, the complexity of natural scenes and the high dimensionality of articulated body models and also the important field in Image, Signal and Vision Computing in recent years. In this paper, four types of people in 2D dimension image will be tested and proposed. The system will extract the size and the advantage of them (such as: tall fat, short fat, tall thin and short thin) from image. Fat and thin, according to their result from the human body that has been extract from image, will be obtained. Also the system extract every size of human body such as length, width and shown them in output.

Keywords: Analysis of Image Processing, Canny Edge Detection, Human Body Recognition, Measurement, Pose Estimation, 2D Human Dimension.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2306
227 Modeling User Behaviour by Planning

Authors: Alfredo Milani, Silvia Suriani

Abstract:

A model of user behaviour based automated planning is introduced in this work. The behaviour of users of web interactive systems can be described in term of a planning domain encapsulating the timed actions patterns representing the intended user profile. The user behaviour recognition is then posed as a planning problem where the goal is to parse a given sequence of user logs of the observed activities while reaching a final state. A general technique for transforming a timed finite state automata description of the behaviour into a numerical parameter planning model is introduced. Experimental results show that the performance of a planning based behaviour model is effective and scalable for real world applications. A major advantage of the planning based approach is to represent in a single automated reasoning framework problems of plan recognitions, plan synthesis and plan optimisation.

Keywords: User behaviour, Timed Transition Automata, Automated Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
226 Perception of Farmers and Agricultural Professionals on Changes in Productivity and Water Resources in Ethiopia

Authors: D. Mojo, Y. Todo, P. Matous

Abstract:

In this paper, perceptions of actors on changes in crop productivity, quantity and quality of water, and determinants of their perception are analyzed using descriptive statistics and ordered logit model. Data collected from 297 Ethiopian farmers and 103 agricultural professionals from December 2009 to January 2010 are employed. Results show that the majority of the farmers and professionals recognized decline in water resources, reasoning climate changes and soil erosion as some of the causes. However, there is a variation in views on changes in productivity. The household asset, education level, age and geographical positions are found to affect farmers- perception on changes in crop productivity. But, the study underlines that there is no evidence that farmers- economic status, age, or education level affects recognition of degradation of water resources. Thus, more focus shall be given on providing them different coping mechanisms and alternative resource conserving technologies than educating about the problems.

Keywords: Agricultural Sustainability, Ethiopia, Perception, Productivity, Water Resources

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
225 Revolutionizing Product Packaging: The Impact of Transparent Graded Lanes on Ketchup and Edible Oil Containers on Consumer Behavior

Authors: Saeid Asghari

Abstract:

The growing interest in sustainability and healthy lifestyles has stimulated the development of solutions that promote mindful consumption and healthier choices. One such solution is the use of transparent graded lanes in product packaging, which enables consumers to visually track their product consumption and encourages portion control. However, the influence of packaging on consumer behavior, trust, and brand loyalty, as well as the effectiveness of messaging on transparent graded lanes, is still not well understood. This research seeks to explore the effects of transparent graded lanes on consumer reactions of the Janbo chain supermarkets in Tehran, Iran, focusing on ketchup and edible oil containers. A representative sample of 720 respondents is selected using quota sampling based on sex, age, and financial status. The study assesses the effect of messaging on the graded lanes in enhancing consumer recall and recognition of the product at the time of purchase, increasing repeated purchases, and fostering long-term relationships with customers. Furthermore, the potential outcomes of using transparent graded lanes, including the promotion of healthy consumption habits and the reduction of food waste, are also considered. The findings and results can inform the development of effective messaging strategies for graded lanes and suggest ways to enhance consumer engagement with product packaging. Moreover, the study's outcomes can contribute to the broader discourse on sustainable consumption and healthy lifestyles, highlighting the potential role of packaging innovations in promoting these values. We used four theories (social cognitive theory, self-perception theory, nudge theory, and marketing and consumer behavior) to examine the effect of these transparent graded lanes on consumer behavior. The conceptual model integrates the use of transparent graded lanes, consumer behavior, trust and loyalty, messaging, and promotion of healthy consumption habits. The study aims to provide insights into how transparent graded lanes can promote mindful consumption, increase consumer recognition and recall of the product, and foster long-term relationships with customers. These innovative packaging designs not only encourage mindful consumption but also promote healthier choices. The communication on the categorized lanes is likewise discovered to be efficient in fostering remembrance and identification of the merchandise during the point of sale and stimulating recurrent acquisition. However, the impact of transparent graded lanes may be limited by factors such as cultural norms, personal values, and financial status. Broadly speaking, the investigation provides valuable insights into the potential benefits and challenges of using transparent graded lanes in product packaging, as well as effective strategies for promoting healthy consumption habits and building long-term relationships with customers.

Keywords: Packaging, customer behavior, purchase, brand loyalty, healthy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 261
224 Study of Icons in Enterprise Application Software Context

Authors: Shiva Subhedar, Abhishek Jain, Shivin Mittal

Abstract:

Icons are not merely decorative elements in enterprise applications but very often used because of their many advantages such as compactness, visual appeal, etc. Despite these potential advantages, icons often cause usability problems when they are designed without consideration for their many potential downsides. The aim of the current study was to examine the effect of articulatory distance – the distance between the physical appearance of an interface element and what it actually means. In other words, will the subject find the association of the function and its appearance on the interface natural or is the icon difficult for them to associate with its function. We have calculated response time and quality of identification by varying icon concreteness, the context of usage and subject experience in the enterprise context. The subjects were asked to associate icons (prepared for study purpose) with given function options in context and out of context mode. Response time and their selection were recorded for analysis.

Keywords: Icons, icon concreteness, icon recognition, HCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1348
223 Occupants- Behavior and Spatial Implications of Riverfront Residential in Yogyakarta, Indonesia

Authors: Hastuti Saptorini

Abstract:

The urbanization phenomenon in Yogyakarta Special Province, Indonesia, encouraged people move to the city for getting jobs in the informal sectors. They live in some temporary houses in the three main riverbanks: Gadjahwong, Code, and Winongo. Triggered by its independent status they use it as the space for accommodating domestic, social and economy activities because of the non standardized room size of their houses, where are recognized as the environmental hazards. This recognition makes the ambivalent perception when was related to the twelfth point of the philosophy of community development concept: the empowering individuals and communities. Its spatial implication have actually described the territory and the place making phenomena. By analyzing some data collected the author-s fundamental research funded by The General Directorate of Higher Education of Indonesia, this paper will discuss how do the spatial implications of the occupants- behavior and the numerous perceptions of those phenomena.

Keywords: occupants' behavior, socio-economic-cultural activities, spatial implication

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
222 Statistical Wavelet Features, PCA, and SVM Based Approach for EEG Signals Classification

Authors: R. K. Chaurasiya, N. D. Londhe, S. Ghosh

Abstract:

The study of the electrical signals produced by neural activities of human brain is called Electroencephalography. In this paper, we propose an automatic and efficient EEG signal classification approach. The proposed approach is used to classify the EEG signal into two classes: epileptic seizure or not. In the proposed approach, we start with extracting the features by applying Discrete Wavelet Transform (DWT) in order to decompose the EEG signals into sub-bands. These features, extracted from details and approximation coefficients of DWT sub-bands, are used as input to Principal Component Analysis (PCA). The classification is based on reducing the feature dimension using PCA and deriving the supportvectors using Support Vector Machine (SVM). The experimental are performed on real and standard dataset. A very high level of classification accuracy is obtained in the result of classification.

Keywords: Discrete Wavelet Transform, Electroencephalogram, Pattern Recognition, Principal Component Analysis, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3120
221 Paper-Based Colorimetric Sensor Utilizing Peroxidase-Mimicking Magnetic Nanoparticles Conjugated with Aptamers

Authors: Min-Ah Woo, Min-Cheol Lim, Hyun-Joo Chang, Sung-Wook Choi

Abstract:

We developed a paper-based colorimetric sensor utilizing magnetic nanoparticles conjugated with aptamers (MNP-Apts) against E. coli O157:H7. The MNP-Apts were applied to a test sample solution containing the target cells, and the solution was simply dropped onto PVDF (polyvinylidene difluoride) membrane. The membrane moves the sample radially to form the sample spots of different compounds as concentric rings, thus the MNP-Apts on the membrane enabled specific recognition of the target cells through a color ring generation by MNP-promoted colorimetric reaction of TMB (3,3',5,5'-tetramethylbenzidine) and H2O2. This method could be applied to rapidly and visually detect various bacterial pathogens in less than 1 h without cell culturing.

Keywords: Aptamer, colorimetric sensor, E. coli O157:H7, magnetic nanoparticle, polyvinylidene difluoride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
220 A New Automatic System of Cell Colony Counting

Authors: U. Bottigli, M.Carpinelli, P.L. Fiori, B. Golosio, A. Marras, G. L. Masala, P. Oliva

Abstract:

The counting process of cell colonies is always a long and laborious process that is dependent on the judgment and ability of the operator. The judgment of the operator in counting can vary in relation to fatigue. Moreover, since this activity is time consuming it can limit the usable number of dishes for each experiment. For these purposes, it is necessary that an automatic system of cell colony counting is used. This article introduces a new automatic system of counting based on the elaboration of the digital images of cellular colonies grown on petri dishes. This system is mainly based on the algorithms of region-growing for the recognition of the regions of interest (ROI) in the image and a Sanger neural net for the characterization of such regions. The better final classification is supplied from a Feed-Forward Neural Net (FF-NN) and confronted with the K-Nearest Neighbour (K-NN) and a Linear Discriminative Function (LDF). The preliminary results are shown.

Keywords: Automatic cell counting, neural network, region growing, Sanger net.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
219 OCR For Printed Urdu Script Using Feed Forward Neural Network

Authors: Inam Shamsher, Zaheer Ahmad, Jehanzeb Khan Orakzai, Awais Adnan

Abstract:

This paper deals with an Optical Character Recognition system for printed Urdu, a popular Pakistani/Indian script and is the third largest understandable language in the world, especially in the subcontinent but fewer efforts are made to make it understandable to computers. Lot of work has been done in the field of literature and Islamic studies in Urdu, which has to be computerized. In the proposed system individual characters are recognized using our own proposed method/ algorithms. The feature detection methods are simple and robust. Supervised learning is used to train the feed forward neural network. A prototype of the system has been tested on printed Urdu characters and currently achieves 98.3% character level accuracy on average .Although the system is script/ language independent but we have designed it for Urdu characters only.

Keywords: Algorithm, Feed Forward Neural Networks, Supervised learning, Pattern Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3043
218 Online Collaborative Learning System Using Speech Technology

Authors: Sid-Ahmed. Selouani, Tang-Ho Lê, Chadia Moghrabi, Benoit Lanteigne, Jean Roy

Abstract:

A Web-based learning tool, the Learn IN Context (LINC) system, designed and being used in some institution-s courses in mixed-mode learning, is presented in this paper. This mode combines face-to-face and distance approaches to education. LINC can achieve both collaborative and competitive learning. In order to provide both learners and tutors with a more natural way to interact with e-learning applications, a conversational interface has been included in LINC. Hence, the components and essential features of LINC+, the voice enhanced version of LINC, are described. We report evaluation experiments of LINC/LINC+ in a real use context of a computer programming course taught at the Université de Moncton (Canada). The findings show that when the learning material is delivered in the form of a collaborative and voice-enabled presentation, the majority of learners seem to be satisfied with this new media, and confirm that it does not negatively affect their cognitive load.

Keywords: E-leaning, Knowledge Network, Speech recognition, Speech synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
217 Myth in Political Discourse as a Form of Linguistic Consciousness

Authors: Kuralay Kenzhekanova, Akmaral Dalelbekkyzy

Abstract:

The article is devoted to the problem of political discourse and its reflection on mass cognition. This article is dedicated to describe the myth as one of the main features of political discourse. The dominance of an expressional and emotional component in the myth is shown. Precedent phenomenon plays an important role in distinguishing the myth from the linguistic point of view. Precedent phenomena show the linguistic cognition, which is characterized by their fame and recognition. Four types of myths such as master myths, a foundation myth, sustaining myth, eschatological myths are observed. The myths about the national idea are characterized by national specificity. The main aim of the political discourse with the help of myths is to influence on the mass consciousness in order to motivate the addressee to certain actions so that the target purpose is reached owing to unity of forces.

Keywords: Cognition, myth, linguistic consciousness, types of myths, political discourse, political myth, precedent phenomena.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2707
216 Action Recognition in Video Sequences using a Mealy Machine

Authors: L. Rodriguez-Benitez, J. Moreno-Garcia, J.J. Castro-Schez, C. Solana, L. Jimenez

Abstract:

In this paper the use of sequential machines for recognizing actions taken by the objects detected by a general tracking algorithm is proposed. The system may deal with the uncertainty inherent in medium-level vision data. For this purpose, fuzzification of input data is performed. Besides, this transformation allows to manage data independently of the tracking application selected and enables adding characteristics of the analyzed scenario. The representation of actions by means of an automaton and the generation of the input symbols for finite automaton depending on the object and action compared are described. The output of the comparison process between an object and an action is a numerical value that represents the membership of the object to the action. This value is computed depending on how similar the object and the action are. The work concludes with the application of the proposed technique to identify the behavior of vehicles in road traffic scenes.

Keywords: Approximate reasoning, finite state machines, video analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
215 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 930
214 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method

Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho

Abstract:

The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.

Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
213 MTSSM - A Framework for Multi-Track Segmentation of Symbolic Music

Authors: Brigitte Rafael, Stefan M. Oertl

Abstract:

Music segmentation is a key issue in music information retrieval (MIR) as it provides an insight into the internal structure of a composition. Structural information about a composition can improve several tasks related to MIR such as searching and browsing large music collections, visualizing musical structure, lyric alignment, and music summarization. The authors of this paper present the MTSSM framework, a twolayer framework for the multi-track segmentation of symbolic music. The strength of this framework lies in the combination of existing methods for local track segmentation and the application of global structure information spanning via multiple tracks. The first layer of the MTSSM uses various string matching techniques to detect the best candidate segmentations for each track of a multi-track composition independently. The second layer combines all single track results and determines the best segmentation for each track in respect to the global structure of the composition.

Keywords: Pattern Recognition, Music Information Retrieval, Machine Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
212 Object Tracking using MACH filter and Optical Flow in Cluttered Scenes and Variable Lighting Conditions

Authors: Waqar Shahid Qureshi, Abu-Baqar Nisar Alvi

Abstract:

Vision based tracking problem is solved through a combination of optical flow, MACH filter and log r-θ mapping. Optical flow is used for detecting regions of movement in video frames acquired under variable lighting conditions. The region of movement is segmented and then searched for the target. A template is used for target recognition on the segmented regions for detecting the region of interest. The template is trained offline on a sequence of target images that are created using the MACH filter and log r-θ mapping. The template is applied on areas of movement in successive frames and strong correlation is seen for in-class targets. Correlation peaks above a certain threshold indicate the presence of target and the target is tracked over successive frames.

Keywords: Correlation filters, optical flow, log r-θ mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152