Search results for: early-warning lights classification
585 Intention to Use Digital Library based on Modified UTAUT Model: Perspectives of Malaysian Postgraduate Students
Authors: Abd Latif Abdul Rahman, Adnan Jamaludin, Zamalia Mahmud
Abstract:
Unified Theory of Acceptance and Use of Technology (UTAUT) model has demonstrated the influencing factors for generic information systems use such as tablet personal computer (TPC) and mobile communication. However, in the context of digital library system, there has been very little effort to determine factors affecting the intention to use digital library based on the UTAUT model. This paper investigates factors that are expected to influence the intention of postgraduate students to use digital library based on modified UTAUT model. The modified model comprises of constructs represented by several latent variables, namely performance expectancy (PE), effort expectancy (EE), information quality (IQ) and service quality (SQ) and moderated by age, gender and experience in using digital library. Results show that performance expectancy, effort expectancy and information quality are positively related to the intention to use digital library, while service quality is negatively related to the intention to use digital library. Age and gender have shown no evidence of any significant interactions, while experience in using digital library significantly interacts with effort expectancy and intention to use digital library. This has provided the evidence of a moderating effect of experience in the intention to use digital library. It is expected that this research will shed new lights into research of acceptance and intention to use the library in a digital environment.Keywords: Intention to use digital library, UTAUT model, performance expectancy, effort expectancy, information quality, service quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4871584 The Non-Stationary BINARMA(1,1) Process with Poisson Innovations: An Application on Accident Data
Authors: Y. Sunecher, N. Mamode Khan, V. Jowaheer
Abstract:
This paper considers the modelling of a non-stationary bivariate integer-valued autoregressive moving average of order one (BINARMA(1,1)) with correlated Poisson innovations. The BINARMA(1,1) model is specified using the binomial thinning operator and by assuming that the cross-correlation between the two series is induced by the innovation terms only. Based on these assumptions, the non-stationary marginal and joint moments of the BINARMA(1,1) are derived iteratively by using some initial stationary moments. As regards to the estimation of parameters of the proposed model, the conditional maximum likelihood (CML) estimation method is derived based on thinning and convolution properties. The forecasting equations of the BINARMA(1,1) model are also derived. A simulation study is also proposed where BINARMA(1,1) count data are generated using a multivariate Poisson R code for the innovation terms. The performance of the BINARMA(1,1) model is then assessed through a simulation experiment and the mean estimates of the model parameters obtained are all efficient, based on their standard errors. The proposed model is then used to analyse a real-life accident data on the motorway in Mauritius, based on some covariates: policemen, daily patrol, speed cameras, traffic lights and roundabouts. The BINARMA(1,1) model is applied on the accident data and the CML estimates clearly indicate a significant impact of the covariates on the number of accidents on the motorway in Mauritius. The forecasting equations also provide reliable one-step ahead forecasts.Keywords: Non-stationary, BINARMA(1, 1) model, Poisson Innovations, CML
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588583 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671582 Fetal and Infant Mortality in Botucatu City, São Paulo State, Brazil: Evaluation of Maternal - Infant Health Care
Authors: Noda L. M., Salvador I. C, C. M. L. G. Parada, Fonseca C. R. B.
Abstract:
In Brazil, neonatal mortality rate is considered incompatible with the country development conditions, and has been a Public Health concern. Reduction in infant mortality rates has also been part of the Millennium Development Goals, a commitment made by countries, members of the Organization of United Nations (OUN), including Brazil. Fetal mortality rate is considered a highly sensitive indicator of health care quality. Suitable actions, such as good quality and access to health services may contribute positively towards reduction in these fetal and neonatal rates. With appropriate antenatal follow-up and health care during gestation and delivery, some death causes could be reduced or even prevented by means of early diagnosis and intervention, as well as changes in risk factors and interventions. Objectives: To study the quality of maternal and infant health care based on fetal and neonatal mortality, as well as the possible actions to prevent those deaths in Botucatu (Brazil). Methods: Classification of prevention according to the International Classification of Diseases and the modified Wigglesworth´s classification. In order to evaluate adequacy, indicators of quality of antenatal and delivery care were established by the authors. Results: Considering fetal deaths, 56.7% of them occurred before delivery, which reveals possible shortcomings in antenatal care, and 38.2% of them were a result of intra- labor changes, which could be prevented or reduced by adequate obstetric management. These findings were different from those in the group of early neonatal deaths which were also studied. Adequacy of health services showed that antenatal and childbirth care was appropriate for 24% and 33.3% of pregnant women, respectively, which corroborates the results of prevention. These results revealed that shortcomings in obstetric and antenatal care could be the causes of deaths in the study. Early and late neonatal deaths have similar characteristics: 76% could be prevented or reduced mainly by adequate newborn care (52.9%) and adequate health care for gestational women (11.7%). When adequacy of care was evaluated, childbirth and newborn care was adequate in 25.8% and antenatal care was adequate in 16.1%. In conclusion, direct relationship was found between adequacy and quality of care rendered to pregnant women and newborns, and fetal and infant mortality. Moreover, our findings highlight that deaths could be prevented by an adequate obstetric and neonatal management.
Keywords: Fetal Mortality, Infant Mortality, Maternal-Child Health Services, Program Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5069581 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers
Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen
Abstract:
In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other.
As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.
Keywords: AIS, ANN, ECG, hybrid classifiers, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916580 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin has emerged as a compelling research area, capturing the attention of scholars over the past decade. It finds applications across diverse fields, including smart manufacturing and healthcare, offering significant time and cost savings. Notably, it often intersects with other cutting-edge technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, the concept of a Human Digital Twin (HDT) is still in its infancy and requires further demonstration of its practicality. HDT takes the notion of Digital Twin a step further by extending it to living entities, notably humans, who are vastly different from inanimate physical objects. The primary objective of this research was to create an HDT capable of automating real-time human responses by simulating human behavior. To achieve this, the study delved into various areas, including clustering, supervised classification, topic extraction, and sentiment analysis. The paper successfully demonstrated the feasibility of HDT for generating personalized responses in social messaging applications. Notably, the proposed approach achieved an overall accuracy of 63%, a highly promising result that could pave the way for further exploration of the HDT concept. The methodology employed Random Forest for clustering the question database and matching new questions, while K-nearest neighbor was utilized for sentiment analysis.
Keywords: Human Digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification and clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188579 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594578 Investigating the Pedestrian Willingness to Pay to Choose Appropriate Policies for Improving the Safety of Pedestrian Facilities
Authors: Babak Mirbaha, Mahmoud Saffarzadeh, Fatemeh Mohajeri
Abstract:
Road traffic accidents lead to a higher rate of death and injury, especially in vulnerable road users such as pedestrians. Improving the safety of facilities for pedestrians is a major concern for policymakers because of the high number of pedestrian fatalities and direct and indirect costs which are imposed to the society. This study focuses on the idea of determining the willingness to pay of pedestrians for increasing their safety while crossing the street. In this study, three different scenarios including crossing the street with zebra crossing facilities, crossing the street with zebra crossing facilities and installing a pedestrian traffic light and constructing a pedestrian bridge with escalator are presented. The research was conducted based on stated preferences method. The required data were collected from a questionnaire that consisted of three parts: pedestrian’s demographic characteristics, travel characteristics and scenarios. Four different payment amounts are presented for each scenario and a logit model has been built for each proposed payment. The results show that sex, age, education, average household income and individual salary have significant effect on choosing a scenario. Among the policies that have been mentioned through the questionnaire scenarios, the scenario of crossing the street with zebra crossing facilities and installing a traffic lights is the most frequent, with willingness to pay 10,000 Rials and the scenario of crossing the street with a zebra crossing with a willingness to pay 100,000 Rials having the least frequency. For all scenarios, as the payment is increasing, the willingness to pay decreases.
Keywords: Pedestrians, willingness to pay, safety, immunization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830577 Cheiloscopy and Dactylography in Relation to ABO Blood Groups: Egyptian vs. Malay Populations
Authors: Manal Hassan Abdel Aziz, Fatma Mohamed Magdy Badr El Dine, Nourhan Mohamed Mohamed Saeed
Abstract:
Establishing association between lip print patterns and those of fingerprints as well as blood groups is of fundamental importance in the forensic identification domain. The first aim of the current study was to determine the prevalent types of ABO blood groups, lip prints and fingerprints patterns in both studied populations. Secondly, to analyze any relation found between the different print patterns and the blood groups, which would be valuable in identification purposes. The present study was conducted on 60 healthy volunteers, (30 males and 30 females) from each of the studied population. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Michael Kuchen’s classification, respectively. The results show that the ulnar loop was the most frequent among both populations. Blood group A was the most frequent among Egyptians, while blood groups O and B were the predominant among Malaysians. Significant relations were observed between lip print patterns and fingerprint (in the second quadrant for Egyptian males and the first one for Malaysian). For Malaysian females, a statistically significant association was proved in the fourth quadrant. Regarding the blood groups, 89.5% of ulnar loops were significantly related to blood group A among Egyptian males. The results proved an association between the fingerprint pattern and the lip prints, as well as between the ABO blood group and the pattern of fingerprints. However, further researches with larger sample sizes need to be directed to approve the current results.Keywords: ABO, cheiloscopy, dactylography, Egyptians, Malaysians.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886576 An Automatic Bayesian Classification System for File Format Selection
Authors: Roman Graf, Sergiu Gordea, Heather M. Ryan
Abstract:
This paper presents an approach for the classification of an unstructured format description for identification of file formats. The main contribution of this work is the employment of data mining techniques to support file format selection with just the unstructured text description that comprises the most important format features for a particular organisation. Subsequently, the file format indentification method employs file format classifier and associated configurations to support digital preservation experts with an estimation of required file format. Our goal is to make use of a format specification knowledge base aggregated from a different Web sources in order to select file format for a particular institution. Using the naive Bayes method, the decision support system recommends to an expert, the file format for his institution. The proposed methods facilitate the selection of file format and the quality of a digital preservation process. The presented approach is meant to facilitate decision making for the preservation of digital content in libraries and archives using domain expert knowledge and specifications of file formats. To facilitate decision-making, the aggregated information about the file formats is presented as a file format vocabulary that comprises most common terms that are characteristic for all researched formats. The goal is to suggest a particular file format based on this vocabulary for analysis by an expert. The sample file format calculation and the calculation results including probabilities are presented in the evaluation section.Keywords: Data mining, digital libraries, digital preservation, file format.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660575 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques
Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson
Abstract:
Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643574 sEMG Interface Design for Locomotion Identification
Authors: Rohit Gupta, Ravinder Agarwal
Abstract:
Surface electromyographic (sEMG) signal has the potential to identify the human activities and intention. This potential is further exploited to control the artificial limbs using the sEMG signal from residual limbs of amputees. The paper deals with the development of multichannel cost efficient sEMG signal interface for research application, along with evaluation of proposed class dependent statistical approach of the feature selection method. The sEMG signal acquisition interface was developed using ADS1298 of Texas Instruments, which is a front-end interface integrated circuit for ECG application. Further, the sEMG signal is recorded from two lower limb muscles for three locomotions namely: Plane Walk (PW), Stair Ascending (SA), Stair Descending (SD). A class dependent statistical approach is proposed for feature selection and also its performance is compared with 12 preexisting feature vectors. To make the study more extensive, performance of five different types of classifiers are compared. The outcome of the current piece of work proves the suitability of the proposed feature selection algorithm for locomotion recognition, as compared to other existing feature vectors. The SVM Classifier is found as the outperformed classifier among compared classifiers with an average recognition accuracy of 97.40%. Feature vector selection emerges as the most dominant factor affecting the classification performance as it holds 51.51% of the total variance in classification accuracy. The results demonstrate the potentials of the developed sEMG signal acquisition interface along with the proposed feature selection algorithm.Keywords: Classifiers, feature selection, locomotion, sEMG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491573 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.
Keywords: Land cover, mapping, multi-temporal, spectral indices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111572 Statistical Feature Extraction Method for Wood Species Recognition System
Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof
Abstract:
Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.Keywords: Classification, fuzzy, inspection system, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744571 Evaluating Emission Reduction Due to a Proposed Light Rail Service: A Micro-Level Analysis
Authors: Saeid Eshghi, Neeraj Saxena, Abdulmajeed Alsultan
Abstract:
Carbon dioxide (CO2) alongside other gas emissions in the atmosphere cause a greenhouse effect, resulting in an increase of the average temperature of the planet. Transportation vehicles are among the main contributors of CO2 emission. Stationary vehicles with initiated motors produce more emissions than mobile ones. Intersections with traffic lights that force the vehicles to become stationary for a period of time produce more CO2 pollution than other parts of the road. This paper focuses on analyzing the CO2 produced by the traffic flow at Anzac Parade Road - Barker Street intersection in Sydney, Australia, before and after the implementation of Light rail transport (LRT). The data are gathered during the construction phase of the LRT by collecting the number of vehicles on each path of the intersection for 15 minutes during the evening rush hour of 1 week (6-7 pm, July 04-31, 2018) and then multiplied by 4 to calculate the flow of vehicles in 1 hour. For analyzing the data, the microscopic simulation software “VISSIM” has been used. Through the analysis, the traffic flow was processed in three stages: before and after implementation of light rail train, and one during the construction phase. Finally, the traffic results were input into another software called “EnViVer”, to calculate the amount of CO2 during 1 h. The results showed that after the implementation of the light rail, CO2 will drop by a minimum of 13%. This finding provides an evidence that light rail is a sustainable mode of transport.Keywords: Carbon dioxide, emission modeling, light rail, microscopic model, traffic flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946570 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images
Authors: Meenal Surawar, Rajashree Kotharkar
Abstract:
Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.
Keywords: Land use, land cover, land surface temperature, remote sensing, urban heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609569 Government of Ghana’s Budget: Its Functions, Coverage, Classification, and Integration with Chart of Accounts
Authors: Mohammed Sani Abdulai
Abstract:
Government budgets are the primary instruments for formulating and implementing a country’s fiscal policy objectives, development priorities, and the overall socio-economic aspirations of its people. Thus, in this paper, the author examined the Government of Ghana’s budgets with respect to their functions, coverage, classifications, and integration with the country’s chart of accounts. The author did so by amalgamating the research findings of extant literature with (a) the operational and procedural guidelines underpinning the formulation and execution of the government’s budgets; (b) the recommendations made by various development partners and thinktanks on reforming the country’s budgeting processes and procedures; and (c) the lessons Ghana could learn from the budget reform efforts of other countries. By way of research findings, the paper showed that the Government of Ghana’s budgets in terms of function are both eclectic and multidimensional. On coverage, the paper showed that the country’s budgets duly cover the revenues and expenditures of the general government (i.e., both the central and sub-national governments). Finally, on classifications, the paper noted with delight the Government of Ghana’s effort in providing classificatory codes to both its national development agenda and such international development goals as the AU’s Agenda 2063 and the UN’s Sustainable Development Goals. However, the paper found some significant lapses that require a complete overhaul and structuring on the integrations of its budget classifications with its chart of accounts. Thus, the paper concluded with a detailed examination of the challenges confronting the country’s current chart of accounts and recommendations for addressing them.
Keywords: Budget, budgetary transactions, budgetary governance, Chart of Accounts, classification, composition, coverage, Public Financial Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516568 Markov Random Field-Based Segmentation Algorithm for Detection of Land Cover Changes Using Uninhabited Aerial Vehicle Synthetic Aperture Radar Polarimetric Images
Authors: Mehrnoosh Omati, Mahmod Reza Sahebi
Abstract:
The information on land use/land cover changing plays an essential role for environmental assessment, planning and management in regional development. Remotely sensed imagery is widely used for providing information in many change detection applications. Polarimetric Synthetic aperture radar (PolSAR) image, with the discrimination capability between different scattering mechanisms, is a powerful tool for environmental monitoring applications. This paper proposes a new boundary-based segmentation algorithm as a fundamental step for land cover change detection. In this method, first, two PolSAR images are segmented using integration of marker-controlled watershed algorithm and coupled Markov random field (MRF). Then, object-based classification is performed to determine changed/no changed image objects. Compared with pixel-based support vector machine (SVM) classifier, this novel segmentation algorithm significantly reduces the speckle effect in PolSAR images and improves the accuracy of binary classification in object-based level. The experimental results on Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) polarimetric images show a 3% and 6% improvement in overall accuracy and kappa coefficient, respectively. Also, the proposed method can correctly distinguish homogeneous image parcels.
Keywords: Coupled Markov random field, environment, object-based analysis, Polarimetric SAR images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863567 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce
Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park
Abstract:
Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.
Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508566 Classifying Students for E-Learning in Information Technology Course Using ANN
Authors: S. Areerachakul, N. Ployong, S. Na Songkla
Abstract:
This research’s objective is to select the model with most accurate value by using Neural Network Technique as a way to filter potential students who enroll in IT course by Electronic learning at Suan Suanadha Rajabhat University. It is designed to help students selecting the appropriate courses by themselves. The result showed that the most accurate model was 100 Folds Cross-validation which had 73.58% points of accuracy.
Keywords: Artificial neural network, classification, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498565 Evaluation of Ensemble Classifiers for Intrusion Detection
Authors: M. Govindarajan
Abstract:
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection.Keywords: Data mining, ensemble, radial basis function, support vector machine, accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702564 Predictors of Social Participation of Children with Cerebral Palsy in Primary Schools in Czech Republic
Authors: Marija Zulić, Vanda Hájková, Nina Brkić-Jovanović, Linda Rathousová, Sanja Tomić
Abstract:
Cerebral palsy is primarily reflected in the disorder of the development of movement and posture, which may be accompanied by sensory disturbances, disturbances of perception, cognition and communication, behavioural disorders and epilepsy. According to current inclusive attitudes towards people with disabilities implies that full social participation of children with cerebral palsy means inclusion in all activities in family, peer, school and leisure environments in the same scope and to the same extent as is the case with the children of proper development and without physical difficulties. Due to the fact that it has been established that the quality of children's participation in primary school is directly related to their social inclusion in future life, the aim of the paper is to identify predictors of social participation, respectively, and in particular, factors that could to improve the quality of social participation of children with cerebral palsy, in the primary school environment in Czech Republic. The study includes children with cerebral palsy (n = 75) in the Czech Republic, aged between six and 12 years who attend mainstream or special primary schools to the sixth grade. The main instrument used was the first and third part of the School function assessment questionnaire. It will also take into account the type of damage assessed according to a scale the Gross motor function classification system, five–level classification system for cerebral palsy. The research results will provide detailed insight into the degree of social participation of children with cerebral palsy and the factors that would be a potential cause of their levels of participation, in regular and special primary schools, in different socioeconomic environments in Czech Republic.
Keywords: Cerebral palsy, social participation, Czech Republic, school function assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246563 The Benefits of End-To-End Integrated Planning from the Mine to Client Supply for Minimizing Penalties
Authors: G. Martino, F. Silva, E. Marchal
Abstract:
The control over delivered iron ore blend characteristics is one of the most important aspects of the mining business. The iron ore price is a function of its composition, which is the outcome of the beneficiation process. So, end-to-end integrated planning of mine operations can reduce risks of penalties on the iron ore price. In a standard iron mining company, the production chain is composed of mining, ore beneficiation, and client supply. When mine planning and client supply decisions are made uncoordinated, the beneficiation plant struggles to deliver the best blend possible. Technological improvements in several fields allowed bridging the gap between departments and boosting integrated decision-making processes. Clusterization and classification algorithms over historical production data generate reasonable previsions for quality and volume of iron ore produced for each pile of run-of-mine (ROM) processed. Mathematical modeling can use those deterministic relations to propose iron ore blends that better-fit specifications within a delivery schedule. Additionally, a model capable of representing the whole production chain can clearly compare the overall impact of different decisions in the process. This study shows how flexibilization combined with a planning optimization model between the mine and the ore beneficiation processes can reduce risks of out of specification deliveries. The model capabilities are illustrated on a hypothetical iron ore mine with magnetic separation process. Finally, this study shows ways of cost reduction or profit increase by optimizing process indicators across the production chain and integrating the different plannings with the sales decisions.Keywords: Clusterization and classification algorithms, integrated planning, optimization, mathematical modeling, penalty minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645562 Information Retrieval: Improving Question Answering Systems by Query Reformulation and Answer Validation
Authors: Mohammad Reza Kangavari, Samira Ghandchi, Manak Golpour
Abstract:
Question answering (QA) aims at retrieving precise information from a large collection of documents. Most of the Question Answering systems composed of three main modules: question processing, document processing and answer processing. Question processing module plays an important role in QA systems to reformulate questions. Moreover answer processing module is an emerging topic in QA systems, where these systems are often required to rank and validate candidate answers. These techniques aiming at finding short and precise answers are often based on the semantic relations and co-occurrence keywords. This paper discussed about a new model for question answering which improved two main modules, question processing and answer processing which both affect on the evaluation of the system operations. There are two important components which are the bases of the question processing. First component is question classification that specifies types of question and answer. Second one is reformulation which converts the user's question into an understandable question by QA system in a specific domain. The objective of an Answer Validation task is thus to judge the correctness of an answer returned by a QA system, according to the text snippet given to support it. For validating answers we apply candidate answer filtering, candidate answer ranking and also it has a final validation section by user voting. Also this paper described new architecture of question and answer processing modules with modeling, implementing and evaluating the system. The system differs from most question answering systems in its answer validation model. This module makes it more suitable to find exact answer. Results show that, from total 50 asked questions, evaluation of the model, show 92% improving the decision of the system.
Keywords: Answer processing, answer validation, classification, question answering, query reformulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2847561 Low-Cost Monitoring System for Hydroponic Urban Vertical Farms
Authors: Francesco Ruscio, Paolo Paoletti, Jens Thomas, Paul Myers, Sebastiano Fichera
Abstract:
This paper presents the development of a low-cost monitoring system for a hydroponic urban vertical farm, enabling its automation and a quantitative assessment of the farm performance. Urban farming has seen increasing interest in the last decade thanks to the development of energy efficient and affordable LED lights; however, the optimal configuration of such systems (i.e. amount of nutrients, light-on time, ambient temperature etc.) is mostly based on the farmers’ experience and empirical guidelines. Moreover, even if simple, the maintenance of such systems is labor intensive as it requires water to be topped-up periodically, mixing of the nutrients etc. To unlock the full potential of urban farming, a quantitative understanding of the role that each variable plays in the growth of the plants is needed, together with a higher degree of automation. The low-cost monitoring system proposed in this paper is a step toward filling this knowledge and technological gap, as it enables collection of sensor data related to water and air temperature, water level, humidity, pressure, light intensity, pH and electric conductivity without requiring any human intervention. More sensors and actuators can also easily be added thanks to the modular design of the proposed platform. Data can be accessed remotely via a simple web interface. The proposed platform can be used both for quantitatively optimizing the setup of the farms and for automating some of the most labor-intensive maintenance activities. Moreover, such monitoring system can also potentially be used for high-level decision making, once enough data are collected.
Keywords: Automation, hydroponics, internet of things, monitoring system, urban farming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849560 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577559 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells
Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth
Abstract:
In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.
Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802558 Implementation of the Personal Emergency Response System
Authors: Ah-young Jeon, In-cheol Kim, Jae-hee Jung, Soo-young Ye, Jae-hyung Kim, Ki-gon Nam, Seoung-wan Baik, Jung-hoon Ro, Gye-rok Jeon
Abstract:
The aged are faced with increasing risk for falls. The aged have the easily fragile bones than others. When falls have occurred, it is important to detect this emergency state because such events often lead to more serious illness or even death. A implementation of PDA system, for detection of emergency situation, was developed using 3-axis accelerometer in this paper as follows. The signals were acquired from the 3-axis accelerometer, and then transmitted to the PDA through Bluetooth module. This system can classify the human activity, and also detect the emergency state like falls. When the fall occurs, the system generates the alarm on the PDA. If a subject does not respond to the alarm, the system determines whether the current situation is an emergency state or not, and then sends some information to the emergency center in the case of urgent situation. Three different studies were conducted on 12 experimental subjects, with results indicating a good accuracy. The first study was performed to detect the posture change of human daily activity. The second study was performed to detect the correct direction of fall. The third study was conducted to check the classification of the daily physical activity. Each test was lasted at least 1 min. in third study. The output of acceleration signal was compared and evaluated by changing a various posture after attaching a 3-axis accelerometer module on the chest. The newly developed system has some important features such as portability, convenience and low cost. One of the main advantages of this system is that it is available at home healthcare environment. Another important feature lies in low cost to manufacture device. The implemented system can detect the fall accurately, so will be widely used in emergency situation.Keywords: Alarm System, Ambulatory monitoring, Emergency detection, Classification of activity, and 3-axis accelerometer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597557 Lighting Consumption Analysis in Retail Industry: Comparative Study
Authors: Elena C. Tamaş, Grațiela M. Țârlea, Gianni Flamaropol, Dragoș Hera
Abstract:
This article is referring to a comparative study regarding the electrical energy consumption for lighting on diverse types of big sizes commercial buildings built in Romania after 2007, having 3, 4, 5 versus 8, 9, 10 operational years. Some buildings have installed building management systems (BMS) to monitor also the lighting performances starting with the opening days till the present days but some have chosen only local meters to implement. Firstly, for each analyzed building, the total required energy power and the energy power consumption for lighting were calculated depending on the lamps number, the unit power and the average daily running hours. All objects and installations were chosen depending on the destination/location of the lighting (exterior parking or access, interior or covering parking, building interior and building perimeter). Secondly, to all lighting objects and installations, mechanical counters were installed, and to the ones linked to BMS there were installed the digital meters as well for a better monitoring. Some efficient solutions are proposed to improve the power consumption, for example the 1/3 lighting functioning for the covered and exterior parking lighting to those buildings if can be done. This type of lighting share can be performed on each level, especially on the night shifts. Another example is to use the dimmers to reduce the light level, depending on the executed work in the respective area, and a 30% power energy saving can be achieved. Using the right BMS to monitor, the energy consumption depending on the average operational daily hours and changing the non-performant unit lights with the ones having LED technology or economical ones might increase significantly the energy performances and reduce the energy consumption of the buildings.
Keywords: Lighting consumption, commercial buildings, maintenance, energy performances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 978556 Emotion Detection in Twitter Messages Using Combination of Long Short-Term Memory and Convolutional Deep Neural Networks
Authors: B. Golchin, N. Riahi
Abstract:
One of the most significant issues as attended a lot in recent years is that of recognizing the sentiments and emotions in social media texts. The analysis of sentiments and emotions is intended to recognize the conceptual information such as the opinions, feelings, attitudes and emotions of people towards the products, services, organizations, people, topics, events and features in the written text. These indicate the greatness of the problem space. In the real world, businesses and organizations are always looking for tools to gather ideas, emotions, and directions of people about their products, services, or events related to their own. This article uses the Twitter social network, one of the most popular social networks with about 420 million active users, to extract data. Using this social network, users can share their information and opinions about personal issues, policies, products, events, etc. It can be used with appropriate classification of emotional states due to the availability of its data. In this study, supervised learning and deep neural network algorithms are used to classify the emotional states of Twitter users. The use of deep learning methods to increase the learning capacity of the model is an advantage due to the large amount of available data. Tweets collected on various topics are classified into four classes using a combination of two Bidirectional Long Short Term Memory network and a Convolutional network. The results obtained from this study with an average accuracy of 93%, show good results extracted from the proposed framework and improved accuracy compared to previous work.
Keywords: emotion classification, sentiment analysis, social networks, deep neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665