Search results for: lung disease.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 568

Search results for: lung disease.

538 Evaluation of Disease Risk Variables in the Control of Bovine Tuberculosis

Authors: Berrin Şentürk

Abstract:

In this study, due to the recurrence of bovine tuberculosis, in the same areas, the risk factors for the disease were determined and evaluated at the local level. This study was carried out in 32 farms where the disease was detected in the district and center of Samsun province in 2014. Predetermined risk factors, such as farm, environmental and economic risks, were investigated with the survey method. It was predetermined that risks in the three groups are similar to the risk variables of the disease on the global scale. These risk factors that increase the susceptibility of the infection must be understood by the herd owners. The risk-based contagious disease management system approach should be applied for bovine tuberculosis by farmers, animal health professionals and public and private sector decision makers.

Keywords: Bovine tuberculosis, disease management, control, outbreak, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
537 Lung Nodule Detection in CT Scans

Authors: M. Antonelli, G. Frosini, B. Lazzerini, F. Marcelloni

Abstract:

In this paper we describe a computer-aided diagnosis (CAD) system for automated detection of pulmonary nodules in computed-tomography (CT) images. After extracting the pulmonary parenchyma using a combination of image processing techniques, a region growing method is applied to detect nodules based on 3D geometric features. We applied the CAD system to CT scans collected in a screening program for lung cancer detection. Each scan consists of a sequence of about 300 slices stored in DICOM (Digital Imaging and Communications in Medicine) format. All malignant nodules were detected and a low false-positive detection rate was achieved.

Keywords: computer assisted diagnosis, medical imagesegmentation, shape recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
536 Prediction of Cardiovascular Disease by Applying Feature Extraction

Authors: Nebi Gedik

Abstract:

Heart disease threatens the lives of a great number of people every year around the world. Heart issues lead to many of all deaths; therefore, early diagnosis and treatment are critical. The diagnosis of heart disease is complicated due to several factors affecting health such as high blood pressure, raised cholesterol, an irregular pulse rhythm, and more. Artificial intelligence has the potential to assist in the early detection and treatment of diseases. Improving heart failure prediction is one of the primary goals of research on heart disease risk assessment. This study aims to determine the features that provide the most successful classification prediction in detecting cardiovascular disease. The performances of each feature are compared using the K-Nearest Neighbor machine learning method. The feature that gives the most successful performance has been identified.

Keywords: Cardiovascular disease, feature extraction, supervised learning, k-NN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137
535 Mathematical Modeling for Dengue Transmission with the Effect of Season

Authors: R. Kongnuy., P. Pongsumpun

Abstract:

Mathematical models can be used to describe the transmission of disease. Dengue disease is the most significant mosquito-borne viral disease of human. It now a leading cause of childhood deaths and hospitalizations in many countries. Variations in environmental conditions, especially seasonal climatic parameters, effect to the transmission of dengue viruses the dengue viruses and their principal mosquito vector, Aedes aegypti. A transmission model for dengue disease is discussed in this paper. We assume that the human and vector populations are constant. We showed that the local stability is completely determined by the threshold parameter, 0 B . If 0 B is less than one, the disease free equilibrium state is stable. If 0 B is more than one, a unique endemic equilibrium state exists and is stable. The numerical results are shown for the different values of the transmission probability from vector to human populations.

Keywords: Dengue disease, mathematical model, season, threshold parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2215
534 Dynamical Transmission Model of Chikungunya in Thailand

Authors: P. Pongsumpun

Abstract:

One of the important tropical diseases is Chikunkunya. This disease is transmitted between the human by the insect-borne virus, of the genus Alphavirus. It occurs in Africa, Asia and the Indian subcontinent. In Thailand, the incidences due to this disease are increasing every year. In this study, the transmission of this disease is studied through dynamical model analysis.

Keywords: Chikunkunya, dynamical model, Endemic region, Routh-Hurwitz criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
533 The Effect of Harmonic Power Fluctuation for Estimating Flicker

Authors: Jin-Lung Guan, Ming-Ta Yang, Jhy-Cherng Gu, Hsin-Hung Chang, Chin-Lung Huang

Abstract:

Voltage flicker problems have long existed in several of the distribution areas served by the Taiwan Power Company. In the past, those research results indicating that the estimated ΔV10 value based on the conventional method is significantly smaller than the survey value. This paper is used to study the relationship between the voltage flicker problems and harmonic power variation for the power system with electric arc furnaces. This investigation discussed thought the effect of harmonic power fluctuation with flicker estimate value. The method of field measurement, statistics and simulation is used. The survey results demonstrate that 10 ΔV estimate must account for the effect of harmonic power variation.

Keywords: Voltage Flicker, Harmonic Power, EAF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
532 Association of Smoking with Chest Radiographic and Lung Function Findings in Retired Bauxite Mining Workers

Authors: L. R. Ferreira, R. C. G. Bianchi, L. C.R. Ferreira, C. M. Galhardi, E. P. Baciuk, L. H. Oliveira

Abstract:

Inhalation hazards are associated with potentially injurious exposure and increased risk for lung diseases, within the bauxite mining industry, especially for the smelter workers. Smoking is related to decreased lung function and leads to chronic lung diseases. This study had the objective to evaluate whether smoking is related to functional and radiographic respiratory changes in retired bauxite mining workers. Methods: This was a retrospective and cross-sectional study involving the analysis of database information of 140 retired bauxite mining workers from Poços de Caldas-MG evaluated at Worker’s Health Reference Center and at the Social Security Brazilian National Institute, from July 1st, 2015 until June 30th, 2016. The workers were divided into three groups: non-smokers (n = 47), ex-smokers (n = 46), and smokers (n = 47). The data included: age, gender, spirometry results, and the presence or not of pulmonary pleural and/or parenchymal changes in chest radiographs. Chi-Squared test was used (p < 0,05). Results: In the smokers’ group, 83% of spirometry tests and 64% of chest x-rays were altered. In the non-smokers’ group, 19% of spirometry tests and 13% of chest x-rays were altered. In the ex-smokers’ group, 35% of spirometry tests and 30% of chest x-rays were altered. Most of the results were statistically significant. Results demonstrated a significant difference between smokers’ and non-smokers’ groups in regard to spirometric and radiographic pulmonary alterations. Ex-smokers’ and non-smokers’ group demonstrated better results when compared to the smokers’ group in relation to altered spirometry and radiograph findings. These data may contribute to planning strategies to enhance smoking cessation programs within the bauxite mining industry.

Keywords: Bauxite mining, spirometry, chest radiography, smoking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
531 Depression and Anxiety Levels in Armenian Crohn's Disease Patients

Authors: Astghik Z. Pepoyan, Elya S. Pepoyan

Abstract:

The Zung self-depression scale and Beck Anxiety Inventory were used to study the depression and anxiety levels of Armenian Crohn's disease patients, as well as to reveal the relation between emotional status and placebo effect of these patients. Despite of registered high levels of depression and anxiety, the high placebo rate during investigations was described. The importance of use of psychotherapies for optimal outcomes during treatments of Crohn's disease is obvious.

Keywords: Crohn's disease, emotional disorders, placebo, psychotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2467
530 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm

Authors: Latha Parthiban, R. Subramanian

Abstract:

Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.

Keywords: CANFIS, genetic algorithms, heart disease, membership function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3995
529 Dengue Transmission Model between Infantand Pregnant Woman with Antibody

Authors: R. Kongnuy, P. Pongsumpun

Abstract:

Dengue, a disease found in most tropical and subtropical areas of the world. It has become the most common arboviral disease of humans. This disease is caused by any of four serotypes of dengue virus (DEN1-DEN4). In many endemic countries, the average age of getting dengue infection is shifting upwards, dengue in pregnancy and infancy are likely to be encountered more frequently. The dynamics of the disease is studied by a compartmental model involving ordinary differential equations for the pregnant, infant human and the vector populations. The stability of each equilibrium point is given. The epidemic dynamic is discussed. Moreover, the numerical results are shown for difference values of dengue antibody.

Keywords: Dengue antibody, infant, pregnant human, mathematical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
528 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data

Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone

Abstract:

This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.

Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124
527 A Study of Liver Checkup in Patients with Hepatitis C in the Region of Batna

Authors: A. Zidani, M. Yahia K. Belhadi, S. Benbia

Abstract:

Hepatitis C is an infectious disease transmitted by blood and due to hepatitis C virus (HCV), which attacks the liver. The infection is characterized by liver inflammation (hepatitis) that is often asymptomatic but can progress to chronic hepatitis and later cirrhosis and liver cancer. Our problem tends to highlight on the one hand the prevalence of infectious disease in the population of the region of Batna and on other hand the biological characteristics of this disease by a screening and a specific diagnosis based on serological tests, liver checkup (measurement of haematological and biochemical parameters). The results showed: The serology of hepatitis C establishes the diagnosis of infection with hepatitis C. In this study and with the serological test, 24 cases of the disease of hepatitis C were found in 1000 suspected cases (7 cases with normal transaminases and 17 cases with elevated transaminases). The prevalence of this disease in this study population was 2.4%. The presence of hepatitis C disrupts liver function including the onset of cytolysis, cholestasis, jaundice, thrombocytopenia, and coagulation disorders.

Keywords: Disease hepatitis C, serology, liver checkup

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
526 Dengue Disease Mapping with Standardized Morbidity Ratio and Poisson-gamma Model: An Analysis of Dengue Disease in Perak, Malaysia

Authors: N. A. Samat, S. H. Mohd Imam Ma’arof

Abstract:

Dengue disease is an infectious vector-borne viral disease that is commonly found in tropical and sub-tropical regions, especially in urban and semi-urban areas, around the world and including Malaysia. There is no currently available vaccine or chemotherapy for the prevention or treatment of dengue disease. Therefore prevention and treatment of the disease depend on vector surveillance and control measures. Disease risk mapping has been recognized as an important tool in the prevention and control strategies for diseases. The choice of statistical model used for relative risk estimation is important as a good model will subsequently produce a good disease risk map. Therefore, the aim of this study is to estimate the relative risk for dengue disease based initially on the most common statistic used in disease mapping called Standardized Morbidity Ratio (SMR) and one of the earliest applications of Bayesian methodology called Poisson-gamma model. This paper begins by providing a review of the SMR method, which we then apply to dengue data of Perak, Malaysia. We then fit an extension of the SMR method, which is the Poisson-gamma model. Both results are displayed and compared using graph, tables and maps. Results of the analysis shows that the latter method gives a better relative risk estimates compared with using the SMR. The Poisson-gamma model has been demonstrated can overcome the problem of SMR when there is no observed dengue cases in certain regions. However, covariate adjustment in this model is difficult and there is no possibility for allowing spatial correlation between risks in adjacent areas. The drawbacks of this model have motivated many researchers to propose other alternative methods for estimating the risk.

Keywords: Dengue disease, Disease mapping, Standardized Morbidity Ratio, Poisson-gamma model, Relative risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295
525 A Diagnostic Fuzzy Rule-Based System for Congenital Heart Disease

Authors: Ersin Kaya, Bulent Oran, Ahmet Arslan

Abstract:

In this study, fuzzy rule-based classifier is used for the diagnosis of congenital heart disease. Congenital heart diseases are defined as structural or functional heart disease. Medical data sets were obtained from Pediatric Cardiology Department at Selcuk University, from years 2000 to 2003. Firstly, fuzzy rules were generated by using medical data. Then the weights of fuzzy rules were calculated. Two different reasoning methods as “weighted vote method" and “singles winner method" were used in this study. The results of fuzzy classifiers were compared.

Keywords: Congenital heart disease, Fuzzy rule-basedclassifiers, Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
524 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: Ganoderma, oil palm, regression model, yield loss, economic loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3237
523 Comparison between Different Classifications of Periodontal Diseases and Their Advantages

Authors: Ilma Robo, Saimir Heta, Merilda Tarja, Sonila Kapaj, Eduart Kapaj, Geriona Lasku

Abstract:

The classification of periodontal diseases has changed significantly in favor of simplifying the protocol of diagnosis and periodontal treatment. This review study aims to highlight the latest publications in the new periodontal disease classification, talking about the most significant differences versus the old classification with the tendency to express the advantages or disadvantages of clinical application. The aim of the study also includes the growing tendency to link the way of classification of periodontal diseases with predetermined protocols of periodontal treatment of the diagnoses included in the classification. The new classification of periodontal diseases is rather comprehensive in its subdivisions, as the disease is viewed in its entirety, with the biological dimensions of the disease, the degree of aggravation and progression of the disease, in relation to risk factors, predisposition to patient susceptibility and impact of periodontal disease to the general health status of the patient.

Keywords: Periodontal diseases, clinical application, periodontal treatment, oral diagnosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 598
522 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 288
521 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis

Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya

Abstract:

In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.

Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
520 Scattering Operator and Spectral Clustering for Ultrasound Images: Application on Deep Venous Thrombi

Authors: Thibaud Berthomier, Ali Mansour, Luc Bressollette, Frédéric Le Roy, Dominique Mottier, Léo Fréchier, Barthélémy Hermenault

Abstract:

Deep Venous Thrombosis (DVT) occurs when a thrombus is formed within a deep vein (most often in the legs). This disease can be deadly if a part or the whole thrombus reaches the lung and causes a Pulmonary Embolism (PE). This disorder, often asymptomatic, has multifactorial causes: immobilization, surgery, pregnancy, age, cancers, and genetic variations. Our project aims to relate the thrombus epidemiology (origins, patient predispositions, PE) to its structure using ultrasound images. Ultrasonography and elastography were collected using Toshiba Aplio 500 at Brest Hospital. This manuscript compares two classification approaches: spectral clustering and scattering operator. The former is based on the graph and matrix theories while the latter cascades wavelet convolutions with nonlinear modulus and averaging operators.

Keywords: Deep venous thrombosis, ultrasonography, elastography, scattering operator, wavelet, spectral clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
519 Vaccinated Susceptible Infected and Recovered (VSIR) Mathematical Model to Study the Effect of Bacillus Calmette-Guerin (BCG) Vaccine and the Disease Stability Analysis

Authors: Muhammad Shahid, Nasir-uddin Khan, Mushtaq Hussain, Muhammad Liaquat Ali, Asif Mansoor

Abstract:

Tuberculosis (TB) remains a leading cause of infectious mortality. It is primarily transmitted by the respiratory route, individuals with active disease may infect others through airborne particles which releases when they cough, talk, or sing and subsequently inhale by others. In order to study the effect of the Bacilli Calmette-Guerin (BCG) vaccine after vaccination of TB patient, a Vaccinated Susceptible Infected and Recovered (VSIR) mathematical model is being developed to achieve the desired objectives. The mathematical model, so developed, shall be used to quantify the effect of BCG Vaccine to protect the immigrant young adult person. Moreover, equations are to be established for the disease endemic and free equilibrium states and subsequently utilized in disease stability analysis. The stability analysis will give a complete picture of disease annihilation from the total population if the total removal rate from the infectious group should be greater than total number of dormant infections produced throughout infectious period.

Keywords: Bacillus Calmette-Guerin vaccine, disease-free equilibrium state, VSIR Quantification, disease stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
518 Placebo Effect on Psychoemotional Status and Clinical Analyses of Armenian Crohn's Disease Patients

Authors: Elya S. Pepoyan, Astghik Z. Pepoyan

Abstract:

The Zung self-depression scale and Beck Anxiety Inventory were used both to study the depression and anxiety levels of Armenian Crohn’s disease patients, and to reveal the relation between emotional status and placebo effect of these patients. On the other hand, the blood cell analyses and gut bacteria investigations were used to assess the placebo effect on ESR, and haemoglobin-s and leukocyte-s levels as well as gut commensal E. coli quantities of these patients. Despite of registered high levels of depression and anxiety, the high placebo effect on psychoemotional status for investigated patients during the investigations was described. On the other hand, no positive effect of placebo on measurements of ESP and hemoglobin-s levels of Crohn’s disease patients was revealed. The importance of use of psychotherapies for optimal outcomes during treatments of Crohn’s disease is discussed.

Keywords: Crohn's disease, emotional disorders, placebo, gut microflora and blood composition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
517 Biological Diagnosis and Physiopathology of von Willebrand-s Disease in a Part of the Algerian Population in the East and the South

Authors: H. Djaara, M. Yahia, H. Bousselsela, N Khelif, A. Zidani, S. Benbia.

Abstract:

Von Willebrand-s disease is the most common inherited bleeding disorder in humans, it caused by qualitative abnormalities of the von Willebrand factor (vWF). Our objective is to determine the prevalence of this disease at part of the Algerian population in the East and the South by a biological diagnosis based on specific biological tests (automated platelet count, the bleeding time (TS), the time of cephalin + activator (TCA), measure of the prothrombin rate (TP), vWF rate and factor VIII rate, Molecular electrophoresis of vWF multimers in agarose gel in the presence of SDS). Four patients of type III or severe Willebrand-s disease were found on 200 suspect cases. All cases are showed a deficit in vWF rate (< 5%), and factor VIII (P<0, 0001), and lengthening very significantly high of the TCA (P<0, 0001) and of the bleeding time (P<0,0001), with a normal blood platelet rate (P=0,7433) and a normal prothrombin rate (P=0,5808), an absence of all the multimers of vWF in plasma patients. The severe Willebrand-s disease is not only one pathology of primary haemostasis, but it can be accompanied by coagulation-s anomaly due to deficit in factor VIII. At this studied population, von Willebrand-s disease is less frequent (2%) than other hemorrhagic syndromes identified by the differential diagnosis like the thrombocytopenia (36%).

Keywords: Von Willebrand's disease, differential diagnosis, von Willebrand factor, factor VIII, biological diagnosis, thrombocytopenia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
516 CMT4G – Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient

Authors: Dana Gabriková, Martin Mistrík, Jarmila Bernasovská, Iveta Tóthová, Jana Kisková

Abstract:

The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.

Keywords: Gypsies, HK1, HSMN-Russe, rare disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
515 Parkinsons Disease Classification using Neural Network and Feature Selection

Authors: Anchana Khemphila, Veera Boonjing

Abstract:

In this study, the Multi-Layer Perceptron (MLP)with Back-Propagation learning algorithm are used to classify to effective diagnosis Parkinsons disease(PD).It-s a challenging problem for medical community.Typically characterized by tremor, PD occurs due to the loss of dopamine in the brains thalamic region that results in involuntary or oscillatory movement in the body. A feature selection algorithm along with biomedical test values to diagnose Parkinson disease.Clinical diagnosis is done mostly by doctor-s expertise and experience.But still cases are reported of wrong diagnosis and treatment. Patients are asked to take number of tests for diagnosis.In many cases,not all the tests contribute towards effective diagnosis of a disease.Our work is to classify the presence of Parkinson disease with reduced number of attributes.Original,22 attributes are involved in classify.We use Information Gain to determine the attributes which reduced the number of attributes which is need to be taken from patients.The Artificial neural networks is used to classify the diagnosis of patients.Twenty-Two attributes are reduced to sixteen attributes.The accuracy is in training data set is 82.051% and in the validation data set is 83.333%.

Keywords: Data mining, classification, Parkinson disease, artificial neural networks, feature selection, information gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3779
514 Defining of the Shape of the Spine Using Moiré Method in Case of Patients with Scheuermann Disease

Authors: Petra Balla, Gabor Manhertz, Akos Antal

Abstract:

Nowadays spinal deformities are very frequent problems among teenagers. Scheuermann disease is a one dimensional deformity of the spine, but it has prevalence over 11% of the children. A traditional technology, the moiré method was used by us for screening and diagnosing this type of spinal deformity. A LabVIEW program has been developed to evaluate the moiré pictures of patients with Scheuermann disease. Two different solutions were tested in this computer program, the extreme and the inflexion point calculation methods. Effects using these methods were compared and according to the results both solutions seemed to be appropriate. Statistical results showed better efficiency in case of the extreme search method where the average difference was only 6,09⁰.

Keywords: Spinal deformity, picture evaluation, moiré method, Scheuermann disease, curve detection, moiré topography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3577
513 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, medial temporal atrophy, LOO Cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
512 Matching-Based Cercospora Leaf Spot Detection in Sugar Beet

Authors: Rong Zhou, Shun’ich Kaneko, Fumio Tanaka, Miyuki Kayamori, Motoshige Shimizu

Abstract:

In this paper, we propose a robust disease detection method, called adaptive orientation code matching (Adaptive OCM), which is developed from a robust image registration algorithm: orientation code matching (OCM), to achieve continuous and site-specific detection of changes in plant disease. We use two-stage framework for realizing our research purpose; in the first stage, adaptive OCM was employed which could not only realize the continuous and site-specific observation of disease development, but also shows its excellent robustness for non-rigid plant object searching in scene illumination, translation, small rotation and occlusion changes and then in the second stage, a machine learning method of support vector machine (SVM) based on a feature of two dimensional (2D) xy-color histogram is further utilized for pixel-wise disease classification and quantification. The indoor experiment results demonstrate the feasibility and potential of our proposed algorithm, which could be implemented in real field situation for better observation of plant disease development.

Keywords: Cercospora Leaf Spot (CLS), Disease detection, Image processing, Orientation Code Matching (OCM), Support Vector Machine (SVM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
511 Local Stability Analysis of Age Structural Model for Herpes Zoster in Thailand

Authors: P. Pongsumpun

Abstract:

Herpes zoster is a disease that manifests as a dermatological condition. The characteristic of this disease is an irritating skin rash with blisters. This is often limited to one side of body. From the data of Herpes zoster cases in Thailand, we found that age structure effects to the transmission of this disease. In this study, we construct the age structural model of Herpes zoster in Thailand. The local stability analysis of this model is given. The numerical solutions are shown to confirm the analytical results.

Keywords: Age structural model, Herpes zoster, local stability, Numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
510 Periodontal Disease or Cement Disease? New Frontier in the Treatment of Periodontal Disease in Dogs

Authors: C. Gallottini, W. Di Mari, A. Amaddeo, K. Barbaro, A. Dolci, G. Dolci, L. Gallottini, G. Barraco, S. Eramo

Abstract:

A group of 10 dogs (group A) with Periodontal Disease in the third stage, were subjected to regenerative therapy of periodontal tissues, by use of nano hydroxy apatite (NHA). These animals induced by general anesthesia, where treated by ultrasonic scaling, root planning, and at the end by a mucogingival flap in which it was applied NHA. The flap was closed and sutured with simple steps. Another group of 10 dogs (group B), control group, was treated only by scaling and root planning. No patient was subjected to antibiotic therapy. After three months, a check was made by inspection of the oral cavity, radiography and bone biopsy at the alveolar level. Group A showed a total restitutio ad integrum of the periodontal structures, and in group B still mild gingivitis in 70% of cases and 30% of the state remains unchanged. Numerous experimental studies both in animals and humans have documented that the grafts of porous hydroxyapatite are rapidly invaded by fibrovascular tissue which is subsequently converted into mature lamellar bone tissue by activating osteoblast. Since we acted on the removal of necrotic cementum and rehabilitating the root tissue by polishing without intervention in the ligament but only on anatomical functional interface of cement-blasts, we can connect the positive evolution of the clinical-only component of the cement that could represent this perspective, the only reason that Periodontal Disease become a Cement Disease, while all other clinical elements as nothing more than a clinical pathological accompanying.

Keywords: Nanoidroxiaphatite, Parodontal Disease, Rigenerative Therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
509 Analysis of a Mathematical Model for Dengue Disease in Pregnant Cases

Authors: Rujira Kongnuy, Puntani Pongsumpun, I-Ming Tang

Abstract:

Dengue fever is an important human arboviral disease. Outbreaks are now reported quite often from many parts of the world. The number of cases involving pregnant women and infant cases are increasing every year. The illness is often severe and complications may occur. Deaths often occur because of the difficulties in early diagnosis and in the improper management of the diseases. Dengue antibodies from pregnant women are passed on to infants and this protects the infants from dengue infections. Antibodies from the mother are transferred to the fetus when it is still in the womb. In this study, we formulate a mathematical model to describe the transmission of this disease in pregnant women. The model is formulated by dividing the human population into pregnant women and non-pregnant human (men and non-pregnant women). Each class is subdivided into susceptible (S), infectious (I) and recovered (R) subclasses. We apply standard dynamical analysis to our model. Conditions for the local stability of the equilibrium points are given. The numerical simulations are shown. The bifurcation diagrams of our model are discussed. The control of this disease in pregnant women is discussed in terms of the threshold conditions.

Keywords: Dengue disease, local stability, mathematical model, pregnancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940