Search results for: fetal electrocardiogram
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 60

Search results for: fetal electrocardiogram

30 Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation

Authors: Dejan Stantic, Jun Jo

Abstract:

ECG contains very important clinical information about the cardiac activities of the heart. Often the ECG signal needs to be captured for a long period of time in order to identify abnormalities in certain situations. Such signal apart of a large volume often is characterised by low quality due to the noise and other influences. In order to extract features in the ECG signal with time-varying characteristics at first need to be preprocessed with the best parameters. Also, it is useful to identify specific parts of the long lasting signal which have certain abnormalities and to direct the practitioner to those parts of the signal. In this work we present a method based on wavelet transform, standard deviation and variable threshold which achieves 100% accuracy in identifying the ECG signal peaks and heartbeat as well as identifying the standard deviation, providing a quick reference to abnormalities.

Keywords: Electrocardiogram-ECG, Arrhythmia, Signal Processing, Wavelet Transform, Standard Deviation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2909
29 A New Technique for Progressive ECG Transmission using Discrete Radon Transform

Authors: Amine Naït-Ali

Abstract:

The aim of this paper is to present a new method which can be used for progressive transmission of electrocardiogram (ECG). The idea consists in transforming any ECG signal to an image, containing one beat in each row. In the first step, the beats are synchronized in order to reduce the high frequencies due to inter-beat transitions. The obtained image is then transformed using a discrete version of Radon Transform (DRT). Hence, transmitting the ECG, leads to transmit the most significant energy of the transformed image in Radon domain. For decoding purpose, the receptor needs to use the inverse Radon Transform as well as the two synchronization frames. The presented protocol can be adapted for lossy to lossless compression systems. In lossy mode we show that the compression ratio can be multiplied by an average factor of 2 for an acceptable quality of reconstructed signal. These results have been obtained on real signals from MIT database.

Keywords: Discrete Radon Transform, ECG compression, synchronization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
28 Robust Detection of R-Wave Using Wavelet Technique

Authors: Awadhesh Pachauri, Manabendra Bhuyan

Abstract:

Electrocardiogram (ECG) is considered to be the backbone of cardiology. ECG is composed of P, QRS & T waves and information related to cardiac diseases can be extracted from the intervals and amplitudes of these waves. The first step in extracting ECG features starts from the accurate detection of R peaks in the QRS complex. We have developed a robust R wave detector using wavelets. The wavelets used for detection are Daubechies and Symmetric. The method does not require any preprocessing therefore, only needs the ECG correct recordings while implementing the detection. The database has been collected from MIT-BIH arrhythmia database and the signals from Lead-II have been analyzed. MatLab 7.0 has been used to develop the algorithm. The ECG signal under test has been decomposed to the required level using the selected wavelet and the selection of detail coefficient d4 has been done based on energy, frequency and cross-correlation analysis of decomposition structure of ECG signal. The robustness of the method is apparent from the obtained results.

Keywords: ECG, P-QRS-T waves, Wavelet Transform, Hard Thresholding, R-wave Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
27 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, e-health sensor shield, raspberry Pi, wifi technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3006
26 HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier

Authors: Onder Yakut, Oguzhan Timus, Emine Dogru Bolat

Abstract:

Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats.

Keywords: Arrhythmic beat detection, ECG, HRV, kNN classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2061
25 Multiwavelet and Biological Signal Processing

Authors: Morteza Moazami-Goudarzi, Ali Taheri, Mohammad Pooyan, Reza Mahboobi

Abstract:

In this paper we are to find the optimum multiwavelet for compression of electrocardiogram (ECG) signals and then, selecting it for using with SPIHT codec. At present, it is not well known which multiwavelet is the best choice for optimum compression of ECG. In this work, we examine different multiwavelets on 24 sets of ECG data with entirely different characteristics, selected from MIT-BIH database. For assessing the functionality of the different multiwavelets in compressing ECG signals, in addition to known factors such as Compression Ratio (CR), Percent Root Difference (PRD), Distortion (D), Root Mean Square Error (RMSE) in compression literature, we also employed the Cross Correlation (CC) criterion for studying the morphological relations between the reconstructed and the original ECG signal and Signal to reconstruction Noise Ratio (SNR). The simulation results show that the Cardinal Balanced Multiwavelet (cardbal2) by the means of identity (Id) prefiltering method to be the best effective transformation. After finding the most efficient multiwavelet, we apply SPIHT coding algorithm on the transformed signal by this multiwavelet.

Keywords: ECG compression, Prefiltering, Cardinal Balanced Multiwavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
24 MITAutomatic ECG Beat Tachycardia Detection Using Artificial Neural Network

Authors: R. Amandi, A. Shahbazi, A. Mohebi, M. Bazargan, Y. Jaberi, P. Emadi, A. Valizade

Abstract:

The application of Neural Network for disease diagnosis has made great progress and is widely used by physicians. An Electrocardiogram carries vital information about heart activity and physicians use this signal for cardiac disease diagnosis which was the great motivation towards our study. In our work, tachycardia features obtained are used for the training and testing of a Neural Network. In this study we are using Fuzzy Probabilistic Neural Networks as an automatic technique for ECG signal analysis. As every real signal recorded by the equipment can have different artifacts, we needed to do some preprocessing steps before feeding it to our system. Wavelet transform is used for extracting the morphological parameters of the ECG signal. The outcome of the approach for the variety of arrhythmias shows the represented approach is superior than prior presented algorithms with an average accuracy of about %95 for more than 7 tachy arrhythmias.

Keywords: Fuzzy Logic, Probabilistic Neural Network, Tachycardia, Wavelet Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2290
23 Noise Removal from Surface Respiratory EMG Signal

Authors: Slim Yacoub, Kosai Raoof

Abstract:

The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results.

Keywords: Surface EMG, Adaptive, Matching Pursuit, Powerline interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4325
22 Hospital Based Electrocardiogram Sensor Grid

Authors: Suken Nayak, Aditya Kambli, Bharati Ingale, Gauri Shukla

Abstract:

The technological concepts such as wireless hospital and portable cardiac telemetry system require the development of physiological signal acquisition devices to be easily integrated into the hospital database. In this paper we present the low cost, portable wireless ECG acquisition hardware that transmits ECG signals to a dedicated computer.The front end of the system obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless Bluetooth module. A monitoring purpose Bluetooth based end user application integrated with patient database management module is developed for the computers. The system will act as a continuous event recorder, which can be used to follow up patients who have been resuscitatedfrom cardiac arrest, ventricular tachycardia but also for diagnostic purposes for patients with arrhythmia symptoms. In addition, cardiac information can be saved into the patient-s database of the hospital.

Keywords: ECG, Bluetooth communication, monitoring application, patient database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
21 Outcomes of Pregnancy in Women with TPO Positive Status after Appropriate Dose Adjustments of Thyroxin: A Prospective Cohort Study

Authors: Revathi S. Rajan, Pratibha Malik, Nupur Garg, Smitha Avula, Kamini A. Rao

Abstract:

This study aimed to analyse the pregnancy outcomes in patients with TPO positivity after appropriate L-Thyroxin supplementation with close surveillance. All pregnant women attending the antenatal clinic at Milann-The Fertility Center, Bangalore, India- from Aug 2013 to Oct 2014 whose booking TSH was more than 2.5 mIU/L were included along with those pregnant women with prior hypothyroidism who were TPO positive. Those with TPO positive status were vigorously managed with appropriate thyroxin supplementation and the doses were readjusted every 3 to 4 weeks until delivery. Women with recurrent pregnancy loss were also tested for TPO positivity and if tested positive, were monitored serially with TSH and fT4 levels every 3 to 4 weeks and appropriately supplemented with thyroxin when the levels fluctuated. The testing was done after an informed consent in all these women. The statistical software namely SAS 9.2, SPSS 15.0, Stata 10.1, MedCalc 9.0.1, Systat 12.0 and R environment ver.2.11.1 were used for the analysis of the data. 460 pregnant women were screened for thyroid dysfunction at booking of which 52% were hypothyroid. Majority of them (31.08%) were subclinically hypothyroid and the remaining were overt. 25% of the total no. of patients screened were TPO positive. The various pregnancy complications that were observed in the TPO positive women were gestational glucose intolerance [60%], threatened abortion [21%], midtrimester abortion [4.3%], premature rupture of membranes [4.3%], cervical funneling [4.3%] and fetal growth restriction [3.5%]. 95.6% of the patients who followed up till the end delivered beyond 30 weeks. 42.6% of these patients had previous history of recurrent abortions or adverse obstetric outcome and 21.7% of the delivered babies required NICU admission. Obstetric outcomes in our study in terms of midtrimester abortions, placental abruption, and preterm delivery improved for the better after close monitoring of the thyroid hormone [TSH and fT4] levels every 3 to 4 weeks with appropriate dose adjustment throughout pregnancy. Euthyroid women with TPO positive status enrolled in the study incidentally were those with recurrent abortions/infertility and required thyroxin supplements due to elevated Thyroid hormone (TSH, fT4) levels during the course of their pregnancy. Significant associations were found with age>30 years and Hyperhomocysteinemia [p=0.017], recurrent pregnancy loss or previous adverse obstetric outcomes [p=0.067] and APLA [p=0.029]. TPO antibody levels >600 I U/ml were significantly associated with development of gestational hypertension [p=0.041] and fetal growth restriction [p=0.082]. Euthyroid women with TPO positivity were also screened periodically to counter fluctuations of the thyroid hormone levels with appropriate thyroxin supplementation. Thus, early identification along with aggressive management of thyroid dysfunction and stratification of these patients based on their TPO status with appropriate thyroxin supplementation beginning in the first trimester will aid risk modulation and also help avert complications.

Keywords: Antinuclear antibody, Subclinical hypothyroidism, Thyroxin, TPO antibody.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
20 Gamma Glutamyl Transferase and Lactate Dehydrogenase as Biochemical Markers of Severity of Preeclampsia

Authors: S. M. Munde, N. R. Hazari, A. P. Thorat, S. B. Gaikwad, V. S. Hatolkar

Abstract:

This study was conducted to examine the possible role of serum Gamma-glutamyltransferase (GGT) and Lactate dehydrogenase (LDH) in the prediction of severity of preeclampsia. The study group comprised of 40 preeclamptic cases (22 with mild and 18 with severe) and 40 healthy normotensive pregnant controls. Serum samples of all the cases were assayed for GGT and LDH. Demographic, hemodynamic and laboratory data as well as serum GGT and LDH levels were compared among the three groups.

The results indicated that severe preeclamptic cases had significantly increased levels of serum GGT and LDH. The symptoms in severe preeclamptic women were significantly increased in patients with GGT > 70 IU/L and LDH >800 IU/L. Elevated levels of serum GGT and LDH can be used as biochemical markers which reflects the severity of preeclampsia and useful for the management of preeclampsia to decrease maternal and fetal morbidity and mortality.

Keywords: Severe Preeclampsia, GGT, LDH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3070
19 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Authors: Ramesh Rajagopalan, Adam Dahlstrom

Abstract:

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and powerline interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz powerline interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of infinite impulse response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

Keywords: Notch filter, ECG, transient, pole radius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3193
18 Perinatal Outcome in Cases with Bleeding during First and Early Second Trimester

Authors: S. Chhabra, C. Tickoo, P. Kalra

Abstract:

Background: Bleeding during first half of pregnancy mostly originates from placenta, some abort, others are at risk of complications. Objective: Study was done to know perinatal outcome with bleeding up to 20 weeks in singleton pregnancy. Material Methods: Subjects were 1020, equal controls managed over 2 years, 435 had viable pregnancy at admission, 135 excluded, 300 followed for perinatal outcome, 99 (19.52% up to 10 weeks), 201 (39.18% of 11-20 weeks). Results: Hypertensive disorders occurred in 24% cases of bleeding within 10 weeks, 22% 11-20 weeks 14.79% controls, placenta previa 4% in 10 weeks, 0.9% 11-20 weeks, 0.97% controls, prelabor rupture of membranes in 16%, 7.45% controls. 20% up to 10 weeks, 35% 11-20 weeks, 18% controls had fetal growth restriction, 34.34% up to 10 weeks 30.35% of 11-20 weeks 17.17% controls had preterm births, perinatal mortality rate in study was 118.62, in controls 68.16 (Uneventful pregnancy in 13.52% study, 46.11% controls). Conclusion: Once bleeding occurs, one third continue pregnancy, maternal neonatal outcome gets affected with variations in cases of bleeding within first 10 weeks & 11-20 weeks.

Keywords: First, Second trimester, bleeding, Disorders, Perinatal Outcome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
17 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning

Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul

Abstract:

In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.

Keywords: Electrocardiogram, dictionary learning, sparse coding, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
16 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery

Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab

Abstract:

This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.

Keywords: Electrocardiography, monitoring, surgery, wireless system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
15 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119
14 A Multimedia Telemonitoring Network for Healthcare

Authors: Hariton N. Costin, Sorin Puscoci, Cristian Rotariu, Bogdan Dionisie, Marinela C. Cimpoesu

Abstract:

TELMES project aims to develop a securized multimedia system devoted to medical consultation teleservices. It will be finalized with a pilot system for a regional telecenters network that connects local telecenters, having as support multimedia platforms. This network will enable the implementation of complex medical teleservices (teleconsulations, telemonitoring, homecare, urgency medicine, etc.) for a broader range of patients and medical professionals, mainly for family doctors and those people living in rural or isolated regions. Thus, a multimedia, scalable network, based on modern IT&C paradigms, will result. It will gather two inter-connected regional telecenters, in Iaşi and Piteşti, Romania, each of them also permitting local connections of hospitals, diagnostic and treatment centers, as well as local networks of family doctors, patients, even educational entities. As communications infrastructure, we aim to develop a combined fixmobile- internet (broadband) links. Other possible communication environments will be GSM/GPRS/3G and radio waves. The electrocardiogram (ECG) acquisition, internet transmission and local analysis, using embedded technologies, was already successfully done for patients- telemonitoring.

Keywords: Healthcare, telemedicine, telemonitoring, ECG analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
13 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2472
12 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Authors: Lina Paola Orozco-Marín, Yuliet Montoya, John Bustamante

Abstract:

Ischemic events can culminate in acute myocardial infarction with irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Tissue engineering proposes therapeutic alternatives by using biomaterials to resemble the native extracellular medium combined with healthy and functional cells. This research focused on developing a natural thermosensitive hydrogel, its physical-chemical characterization and in vitro biocompatibility determination. Hydrogels’ morphological characterization was carried out through scanning electron microscopy and its chemical characterization by employing Infrared Spectroscopy technic. In addition, the biocompatibility was determined using fetal human ventricular cardiomyocytes cell line RL-14 and the MTT cytotoxicity test according to the ISO 10993-5 standard. Four biocompatible and thermosensitive hydrogels were obtained with a three-dimensional internal structure and two gelation times. The results show the potential of the hydrogel to increase the cell survival rate to the cardiac cell therapies under investigation and lay the foundations to continue with its characterization and biological evaluation both in vitro and in vivo models.

Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
11 ECG Based Reliable User Identification Using Deep Learning

Authors: R. N. Begum, Ambalika Sharma, G. K. Singh

Abstract:

Identity theft has serious ramifications beyond data and personal information loss. This necessitates the implementation of robust and efficient user identification systems. Therefore, automatic biometric recognition systems are the need of the hour, and electrocardiogram (ECG)-based systems are unquestionably the best choice due to their appealing inherent characteristics. The Convolutional Neural Networks (CNNs) are the recent state-of-the-art techniques for ECG-based user identification systems. However, the results obtained are significantly below standards, and the situation worsens as the number of users and types of heartbeats in the dataset grows. As a result, this study proposes a highly accurate and resilient ECG-based person identification system using CNN's dense learning framework. The proposed research explores explicitly the caliber of dense CNNs in the field of ECG-based human recognition. The study tests four different configurations of dense CNN which are trained on a dataset of recordings collected from eight popular ECG databases. With the highest False Acceptance Rate (FAR)  of 0.04% and the highest False Rejection Rate (FRR)  of 5%, the best performing network achieved an identification accuracy of 99.94%. The best network is also tested with various train/test split ratios. The findings show that DenseNets are not only extremely reliable, but also highly efficient. Thus, they might also be implemented in real-time ECG-based human recognition systems.

Keywords: Biometrics, dense networks, identification rate, train/test split ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541
10 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings

Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria

Abstract:

In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.

Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
9 Embryo Transfer as an Assisted Reproductive Technology in Farm Animals

Authors: Diah Tri Widayati

Abstract:

Various assisted reproductive techniques have been developed and refined to obtain a large number of offspring from genetically superior animals or obtain offspring from infertile (or subfertile) animals. The embryo transfer is one assisted reproductive technique developed well, aimed at increased productivity of selected females, disease control, importation and exportation of livestock, rapid screening of AI sires for genetically recessive characteristics, treatment or circumvention of certain types of infertility. Embryo transfer also is a useful research tool for evaluating fetal and maternal interactions. This technique has been applied to nearly every species of domestic animal and many species of wildlife and exotic animals, including humans and non-human primates. The successful of embryo transfers have been limited to within-animal, homologous replacement of the embryos. There are several examples of interspecific and intergeneric embryo transfers in which embryos implanted but did not develop to term: sheep and goat, mouse and rat. An immunological rejections and placental incompatibility between the embryo and the surrogate mother appear to restrict interspecific embryo transfer/interspecific pregnancy. Recently, preimplantation embryo manipulation procedures have been applied, such as technique of inner cell mass transfer. This technique will possible to overcome the reproductive barrier interspecific embryo transfer/interspecific pregnancy, if there is a protective mechanism which prevents recognition of the foreign fetus by the mother of the other species

Keywords: Embryo Transfer, Assisted Reproductive Techology, Intraspesific-Interspesific Pregnancy, Inner cell mass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4723
8 A Study of Cardio Pulmonary Changes during Upper Gastrointestinal Endoscopy

Authors: Sharan Badiger, Prema T. Akkasaligar, P. Amith Kumar

Abstract:

Upper gastrointestinal endoscopy is a commonly performed diagnostic and therapeutic procedure and has many adverse effects like cardiopulmonary complications, complications related to sedation, infectious complications, bleeding and perforation. So this study was undertaken to evaluate important variables like patient’s age, gender and stage of the procedure in relation to the cardiopulmonary changes during diagnostic upper gastrointestinal endoscopy by monitoring oxygen saturation, blood pressure, heart rate and electrocardiogram. This is a prospective longitudinal hospital based study involving a total of 140 consecutive patients, at Sri. B. M. Patil Medical College, Hospital and Research Centre. Cardiopulmonary changes during upper gastrointestinal endoscopy are more common in the age groups of 51-60 years, with equal frequency in both male and female. Oxygen saturation levels decreased by about 4% in both sexes during introduction of endoscopy. Mild to moderate hypoxia was found in 32% of the study group. Severe hypoxia was found in 5% of the patients, mostly in those patients who are above 50 years of age. Tachycardia was noted in 88% of the study group patients. Blood pressure increased to hypertension levels in 22 patients (15.7%) which returned to normal within few minutes after the procedure. S-T depression was noticed in 4% of patients and T wave inversion in 8% of patients during upper gastrointestinal endoscopy. All these changes disappeared after 10 minutes after the endoscopy. Cardiopulmonary changes are common during upper gastrointestinal endoscopy. Maximum changes in oxygen saturation, heart rate and blood pressure occurred immediately after the introduction of endoscope. The cardiopulmonary changes did not manifest into any identifiable clinical symptoms. The rate of recovery was faster in younger age groups and women.

Keywords: Blood Pressure, Cardio-Pulmonary, Heart Rate, Oxygen Saturation, Upper Gastrointestinal Endoscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3216
7 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers

Authors: Alexandre Boum, Salomon Madinatou

Abstract:

This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.

Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 708
6 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
5 A Continuous Real-Time Analytic for Predicting Instability in Acute Care Rapid Response Team Activations

Authors: Ashwin Belle, Bryce Benson, Mark Salamango, Fadi Islim, Rodney Daniels, Kevin Ward

Abstract:

A reliable, real-time, and non-invasive system that can identify patients at risk for hemodynamic instability is needed to aid clinicians in their efforts to anticipate patient deterioration and initiate early interventions. The purpose of this pilot study was to explore the clinical capabilities of a real-time analytic from a single lead of an electrocardiograph to correctly distinguish between rapid response team (RRT) activations due to hemodynamic (H-RRT) and non-hemodynamic (NH-RRT) causes, as well as predict H-RRT cases with actionable lead times. The study consisted of a single center, retrospective cohort of 21 patients with RRT activations from step-down and telemetry units. Through electronic health record review and blinded to the analytic’s output, each patient was categorized by clinicians into H-RRT and NH-RRT cases. The analytic output and the categorization were compared. The prediction lead time prior to the RRT call was calculated. The analytic correctly distinguished between H-RRT and NH-RRT cases with 100% accuracy, demonstrating 100% positive and negative predictive values, and 100% sensitivity and specificity. In H-RRT cases, the analytic detected hemodynamic deterioration with a median lead time of 9.5 hours prior to the RRT call (range 14 minutes to 52 hours). The study demonstrates that an electrocardiogram (ECG) based analytic has the potential for providing clinical decision and monitoring support for caregivers to identify at risk patients within a clinically relevant timeframe allowing for increased vigilance and early interventional support to reduce the chances of continued patient deterioration.

Keywords: Critical care, early warning systems, emergency medicine, heart rate variability, hemodynamic instability, rapid response team.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
4 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera

Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl

Abstract:

Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The root mean square errors (RMSE) between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.

Keywords: Neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
3 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
2 Physiological and Psychological Influence on Office Workers during Demand Response

Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura

Abstract:

In recent years, the power system has been changed and a flexible power pricing system such as demand response has been sought in Japan. The demand response system works simply in the household sector and the owner as the decision-maker, can benefit from power saving. On the other hand, the execution of demand response in the office building is more complex than in the household because various people such as owners, building administrators and occupants are involved in the decision-making process. While the owners benefit from demand saving, the occupants are exposed to restricted benefits of a demand-saved environment. One of the reasons is that building systems are usually under centralized management and each occupant cannot choose freely whether to participate in demand response or not. In addition, it is unclear whether incentives give occupants the motivation to participate. However, the recent development of IT and building systems enables the personalized control of the office environment where each occupant can control the lighting level or temperature individually. Therefore, it can be possible to have a system which each occupant can make a decision of whether or not to participate in demand response in the office building. This study investigates personal responses to demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their desk-lights are automatically turned off. The participation rates in the demand response events are compared among four groups, which are divided by different motivation, the presence, or absence of incentives and the method of participation. The result shows that there are significant differences of participation rates in demand response event between four groups. The method of participation has a large effect on the participation rate. The “Opt-out” groups where the occupants are automatically enrolled in a demand response event if they do not express non-participation have the highest participation rate in the four groups. Incentives also have an effect on the participation rate. This study also reports on the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective fatigue symptoms of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.

Keywords: Demand response, illumination, questionnaire, electrocardiograph.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1 Investigation of Genetic Epidemiology of Metabolic Compromises in ß Thalassemia Minor Mutation: Phenotypic Pleiotropy

Authors: Surajit Debnath, Soma Addya

Abstract:

Human genome is not only the evolutionary summation of all advantageous events, but also houses lesions of deleterious foot prints. A single gene mutation sometimes may express multiple consequences in numerous tissues and a linear relationship of the genotype and the phenotype may often be obscure. ß Thalassemia minor, a transfusion independent mild anaemia, coupled with environment among other factors may articulate into phenotypic pleotropy with Hypocholesterolemia, Vitamin D deficiency, Tissue hypoxia, Hyper-parathyroidism and Psychological alterations. Occurrence of Pancreatic insufficiency, resultant steatorrhoea, Vitamin-D (25-OH) deficiency (13.86 ngm/ml) with Hypocholesterolemia (85mg/dl) in a 30 years old male ß Thal-minor patient (Hemoglobin 11mg/dl with Fetal Hemoglobin 2.10%, Hb A2 4.60% and Hb Adult 84.80% and altered Hemogram) with increased Para thyroid hormone (62 pg/ml) & moderate Serum Ca+2 (9.5mg/ml) indicate towards a cascade of phenotypic pleotropy where the ß Thalassemia mutation ,be it in the 5’ cap site of the mRNA , differential splicing etc in heterozygous state is effecting several metabolic pathways. Compensatory extramedulary hematopoiesis may not coped up well with the stressful life style of the young individual and increased erythropoietic stress with high demand for cholesterol for RBC membrane synthesis may have resulted in Hypocholesterolemia.Oxidative stress and tissue hypoxia may have caused the pancreatic insufficiency, leading to Vitamin D deficiency. This may in turn have caused the secondary hyperparathyroidism to sustain serum Calcium level. Irritability and stress intolerance of the patient was a cumulative effect of the vicious cycle of metabolic compromises. From these findings we propose that the metabolic deficiencies in the ß Thalassemia mutations may be considered as the phenotypic display of the pleotropy to explain the genetic epidemiology. According to the recommendations from the NIH Workshop on Gene-Environment Interplay in Common Complex Diseases: Forging an Integrative Model, study design of observations should be informed by gene-environment hypotheses and results of a study (genetic diseases) should be published to inform future hypotheses. Variety of approaches is needed to capture data on all possible aspects, each of which is likely to contribute to the etiology of disease. Speakers also agreed that there is a need for development of new statistical methods and measurement tools to appraise information that may be missed out by conventional method where large sample size is needed to segregate considerable effect. A meta analytic cohort study in future may bring about significant insight on to the title comment.

Keywords: Genetic disease, Genetic epidemiology, Heterozygous, Phenotype, Pleotropy, ß Thalassemia minor, Metabolic compromises.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6565