Search results for: Bagher Mojazi Amiri
14 Anomaly Detection using Neuro Fuzzy system
Authors: Fatemeh Amiri, Caro Lucas, Nasser Yazdani
Abstract:
As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectivelyKeywords: anomaly Detection, feature selection, Locally Linear Neuro Fuzzy (LLNF), Mutual Information (MI), liner correlation coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218413 Thermophysical and Heat Transfer Performance of Covalent and Noncovalent Functionalized Graphene Nanoplatelet-Based Water Nanofluids in an Annular Heat Exchanger
Authors: Hamed K. Arzani, Ahmad Amiri, Hamid K. Arzani, Salim Newaz Kazi, Ahmad Badarudin
Abstract:
The new design of heat exchangers utilizing an annular distributor opens a new gateway for realizing higher energy optimization. To realize this goal, graphene nanoplatelet-based water nanofluids with promising thermophysical properties were synthesized in the presence of covalent and noncovalent functionalization. Thermal conductivity, density, viscosity and specific heat capacity were investigated and employed as a raw data for ANSYS-Fluent to be used in two-phase approach. After validation of obtained results by analytical equations, two special parameters of convective heat transfer coefficient and pressure drop were investigated. The study followed by studying other heat transfer parameters of annular pass in the presence of graphene nanopletelesbased water nanofluids at different weight concentrations, input powers and temperatures. As a result, heat transfer performance and friction loss are predicted for both synthesized nanofluids.Keywords: Heat transfer, nanofluid, turbulent flow, forced convection flow, graphene nanoplatelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 217112 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets
Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew
Abstract:
Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.Keywords: Nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158811 Evaluation of Eulerian and Lagrangian Method in Analysis of Concrete Gravity Dam Including Dam Water Foundation Interaction
Authors: L. Khan mohammadi, J. Vaseghi Amiri, B. Navayi neya , M. Davoodi
Abstract:
Because of the reservoir effect, dynamic analysis of concrete dams is more involved than other common structures. This problem is mostly sourced by the differences between reservoir water, dam body and foundation material behaviors. To account for the reservoir effect in dynamic analysis of concrete gravity dams, two methods are generally employed. Eulerian method in reservoir modeling gives rise to a set of coupled equations, whereas in Lagrangian method, the same equations for dam and foundation structure are used. The Purpose of this paper is to evaluate and study possible advantages and disadvantages of both methods. Specifically, application of the above methods in the analysis of dam-foundationreservoir systems is leveraged to calculate the hydrodynamic pressure on dam faces. Within the frame work of dam- foundationreservoir systems, dam displacement under earthquake for various dimensions and characteristics are also studied. The results of both Lagrangian and Eulerian methods in effects of loading frequency, boundary condition and foundation elasticity modulus are quantitatively evaluated and compared. Our analyses show that each method has individual advantages and disadvantages. As such, in any particular case, one of the two methods may prove more suitable as presented in the results section of this study.
Keywords: Lagrangian method, Eulerian method, Earthquake, Concrete gravity dam
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181510 Ultimately Bounded Takagi-Sugeno Fuzzy Management in Urban Traffic Stream Mechanism: Multi-Agent Modeling Approach
Authors: Reza Ghasemi, Negin Amiri Hazaveh
Abstract:
In this paper, control methodology based on the selection of the type of traffic light and the period of the green phase to accomplish an optimum balance at intersections is proposed. This balance should be flexible to the static behavior of time, and randomness in a traffic situation; the goal of the proposed method is to reduce traffic volume in transportation, the average delay for each vehicle, and control over the crash of cars. The proposed method was specifically investigated at the intersection through an appropriate timing of traffic lights by sampling a multi-agent system. It consists of a large number of intersections, each of which is considered as an independent agent that exchanges information with each other, and the stability of each agent is provided separately. The robustness against uncertainties, scalability, and stability of the closed-loop overall system are the main merits of the proposed methodology. The simulation results show that the fuzzy intelligent controller in this multi-factor system which is a Takagi-Sugeno (TS) fuzzy is more useful than scheduling in the fixed-time method and it reduces the lengths of vehicles queuing.
Keywords: Fuzzy intelligent controller, traffic-light control, multi-agent systems, state space equations, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5549 Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity
Authors: Amir Amiri, Naghmeh Morakabati
Abstract:
During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.
Keywords: Chitosan, encapsulation, essential oil, nanogel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15508 Multi-Stage Multi-Period Production Planning in Wire and Cable Industry
Authors: Mahnaz Hosseinzadeh, Shaghayegh Rezaee Amiri
Abstract:
This paper presents a methodology for serial production planning problem in wire and cable manufacturing process that addresses the problem of input-output imbalance in different consecutive stations, hoping to minimize the halt of machines in each stage. To this end, a linear Goal Programming (GP) model is developed, in which four main categories of constraints as per the number of runs per machine, machines’ sequences, acceptable inventories of machines at the end of each period, and the necessity of fulfillment of the customers’ orders are considered. The model is formulated based upon on the real data obtained from IKO TAK Company, an important supplier of wire and cable for oil and gas and automotive industries in Iran. By solving the model in GAMS software the optimal number of runs, end-of-period inventories, and the possible minimum idle time for each machine are calculated. The application of the numerical results in the target company has shown the efficiency of the proposed model and the solution in decreasing the lead time of the end product delivery to the customers by 20%. Accordingly, the developed model could be easily applied in wire and cable companies for the aim of optimal production planning to reduce the halt of machines in manufacturing stages.
Keywords: Serial manufacturing process, production planning, wire and cable industry, goal programming approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9317 Effect of Carbon-Free Fly Ash and Ground Granulated Blast-Furnace Slag on Compressive Strength of Mortar under Different Curing Conditions
Authors: Abdul Khaliq Amiri, Shigeyuki Date
Abstract:
This study investigates the effect of using carbon-free fly ash (CfFA) and ground granulated blast-furnace slag (GGBFS) on the compressive strength of mortar. The CfFA used in this investigation is high-quality fly ash and the carbon content is 1.0% or less. In this study, three types of blends with a 30% water-binder ratio (w/b) were prepared: control, binary and ternary blends. The Control blend contained only Ordinary Portland Cement (OPC), in binary and ternary blends OPC was partially replaced with CfFA and GGBFS at different substitution rates. Mortar specimens were cured for 1 day, 7 days and 28 days under two curing conditions: steam curing and water curing. The steam cured specimens were exposed to two different pre-curing times (1.5 h and 2.5 h) and one steam curing duration (6 h) at 45 °C. The test results showed that water cured specimens revealed higher compressive strength than steam cured specimens at later ages. An increase in CfFA and GGBFS contents caused a decrease in the compressive strength of mortar. Ternary mixes exhibited better compressive strength than binary mixes containing CfFA with the same replacement ratio of mineral admixtures.Keywords: Carbon-free fly ash, compressive strength, ground granulated blast-furnace slag, steam curing, water curing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4466 Feature Reduction of Nearest Neighbor Classifiers using Genetic Algorithm
Authors: M. Analoui, M. Fadavi Amiri
Abstract:
The design of a pattern classifier includes an attempt to select, among a set of possible features, a minimum subset of weakly correlated features that better discriminate the pattern classes. This is usually a difficult task in practice, normally requiring the application of heuristic knowledge about the specific problem domain. The selection and quality of the features representing each pattern have a considerable bearing on the success of subsequent pattern classification. Feature extraction is the process of deriving new features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allow higher classification accuracy. Many current feature extraction techniques involve linear transformations of the original pattern vectors to new vectors of lower dimensionality. While this is useful for data visualization and increasing classification efficiency, it does not necessarily reduce the number of features that must be measured since each new feature may be a linear combination of all of the features in the original pattern vector. In this paper a new approach is presented to feature extraction in which feature selection, feature extraction, and classifier training are performed simultaneously using a genetic algorithm. In this approach each feature value is first normalized by a linear equation, then scaled by the associated weight prior to training, testing, and classification. A knn classifier is used to evaluate each set of feature weights. The genetic algorithm optimizes a vector of feature weights, which are used to scale the individual features in the original pattern vectors in either a linear or a nonlinear fashion. By this approach, the number of features used in classifying can be finely reduced.Keywords: Feature reduction, genetic algorithm, pattern classification, nearest neighbor rule classifiers (k-NNR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17675 Development of an Implicit Physical Influence Upwind Scheme for Cell-Centered Finite Volume Method
Authors: Shidvash Vakilipour, Masoud Mohammadi, Rouzbeh Riazi, Scott Ormiston, Kimia Amiri, Sahar Barati
Abstract:
An essential component of a finite volume method (FVM) is the advection scheme that estimates values on the cell faces based on the calculated values on the nodes or cell centers. The most widely used advection schemes are upwind schemes. These schemes have been developed in FVM on different kinds of structured and unstructured grids. In this research, the physical influence scheme (PIS) is developed for a cell-centered FVM that uses an implicit coupled solver. Results are compared with the exponential differencing scheme (EDS) and the skew upwind differencing scheme (SUDS). Accuracy of these schemes is evaluated for a lid-driven cavity flow at Re = 1000, 3200, and 5000 and a backward-facing step flow at Re = 800. Simulations show considerable differences between the results of EDS scheme with benchmarks, especially for the lid-driven cavity flow at high Reynolds numbers. These differences occur due to false diffusion. Comparing SUDS and PIS schemes shows relatively close results for the backward-facing step flow and different results in lid-driven cavity flow. The poor results of SUDS in the lid-driven cavity flow can be related to its lack of sensitivity to the pressure difference between cell face and upwind points, which is critical for the prediction of such vortex dominant flows.
Keywords: Cell-centered finite volume method, physical influence scheme, exponential differencing scheme, skew upwind differencing scheme, false diffusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10854 The Emergence of Smart Growth in Developed and Developing Countries and Its Possible Application in Kabul City, Afghanistan
Authors: Bashir Ahmad Amiri, Nsenda Lukumwena
Abstract:
The global trend indicates that more and more people live and will continue to live in urban areas. Today cities are expanding both in physical size and number due to the rapid population growth along with sprawl development, which caused the cities to expand beyond the growth boundary and exerting intense pressure on environmental resources specially farmlands to accommodate new housing and urban facilities. Also noticeable is the increase in urban decay along with the increase of slum dwellers present another challenge that most cities in developed and developing countries have to deal with. Today urban practitioners, researchers, planners, and decision-makers are seeking for alternative development and growth management policies to house the rising urban population and also cure the urban decay and slum issues turn to Smart Growth to achieve their goals. Many cities across the globe have adopted smart growth as an alternative growth management tool to deal with patterns and forms of development and to cure the rising urban and environmental problems. The method used in this study is a literature analysis method through reviewing various resources to highlight the potential benefits of Smart Growth in both developed and developing countries and analyze, to what extent it can be a strategic alternative for Afghanistan’s cities, especially the capital city. Hence a comparative analysis is carried on three countries, namely the USA, China, and India to identify the potential benefits of smart growth likely to serve as an achievable broad base for recommendations in different urban contexts.
Keywords: Growth management, housing, Kabul city, smart growth, urban-expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9493 Determination of Some Physical and Mechanical Properties of Pofaki Variety of Pea
Authors: M. Azadbakht, E. Ghajarjazi, E. Amiri, F. Abdigaol
Abstract:
In this research the effect of moisture at three levels (47, 57, and 67 w.b.%) on the physical properties of the Pofaki pea variety including, dimensions, geometric mean diameter, volume, sphericity index and the surface area was determined. The influence of different moisture levels (47, 57 and 67 w.b.%), in two loading orientation (longitudinal and transverse) and three loading speed (4,6 and 8 mm min-1) on the mechanical properties of pea such as maximum deformation, rupture force, rupture energy, toughness and the power to break the pea was investigated. It was observed in the physical properties that moisture changes were affective at 1% on, dimensions, geometric mean diameter, volume, sphericity index and the surface area. It was observed in the mechanical properties that moisture changes were effective at 1% on, maximum deformation, rupture force, rupture energy, toughness and the power to break. Loading speed was effective on maximum deformation, rupture force, rupture energy at 1% and it was effective on toughness at 5%. Loading orientation was effective on maximum deformation, rupture force, rupture energy, toughness at 1% and it was effective on power at 5%. The mutual effect of speed and orientation were effective on rupture energy at 1% and were effective on toughness at 5% probability. The mutual effect of moisture and speed were effective on rupture force and rupture energy at 1% and were effective on toughness 5% probability. The mutual effect of orientation and moisture on rupture energy and toughness were effective at 1%.
Keywords: Mechanical properties, Pea, Physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23412 A Two-Phase Flow Interface Tracking Algorithm Using a Fully Coupled Pressure-Based Finite Volume Method
Authors: Shidvash Vakilipour, Scott Ormiston, Masoud Mohammadi, Rouzbeh Riazi, Kimia Amiri, Sahar Barati
Abstract:
Two-phase and multi-phase flows are common flow types in fluid mechanics engineering. Among the basic and applied problems of these flow types, two-phase parallel flow is the one that two immiscible fluids flow in the vicinity of each other. In this type of flow, fluid properties (e.g. density, viscosity, and temperature) are different at the two sides of the interface of the two fluids. The most challenging part of the numerical simulation of two-phase flow is to determine the location of interface accurately. In the present work, a coupled interface tracking algorithm is developed based on Arbitrary Lagrangian-Eulerian (ALE) approach using a cell-centered, pressure-based, coupled solver. To validate this algorithm, an analytical solution for fully developed two-phase flow in presence of gravity is derived, and then, the results of the numerical simulation of this flow are compared with analytical solution at various flow conditions. The results of the simulations show good accuracy of the algorithm despite using a nearly coarse and uniform grid. Temporal variations of interface profile toward the steady-state solution show that a greater difference between fluids properties (especially dynamic viscosity) will result in larger traveling waves. Gravity effect studies also show that favorable gravity will result in a reduction of heavier fluid thickness and adverse gravity leads to increasing it with respect to the zero gravity condition. However, the magnitude of variation in favorable gravity is much more than adverse gravity.Keywords: Coupled solver, gravitational force, interface tracking, Reynolds number to Froude number, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10131 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.
Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883