Search results for: advanced reactor fuel reprocessing
942 Enlightening Malaysia's Energy Policies and Strategies for Modernization and Sustainable Development
Authors: Hussain Ali Bekhet, Nor Salwati Othman
Abstract:
Malaysia has achieved remarkable economic growth since 1957, moving toward modernization from a predominantly agriculture base to manufacturing and—now—modern services. The development policies (i.e., New Economic Policy [1970–1990], the National Development Policy [1990–2000], and Vision 2020) have been recognized as the most important drivers of this transformation. The transformation of the economic structure has moved along with rapid gross domestic product (GDP) growth, urbanization growth, and greater demand for energy from mainly fossil fuel resources, which in turn, increase CO2 emissions. Malaysia faced a great challenge to bring down the CO2 emissions without compromising economic development. Solid policies and a strategy to reduce dependencies on fossil fuel resources and reduce CO2 emissions are needed in order to achieve sustainable development. This study provides an overview of the Malaysian economic, energy, and environmental situation, and explores the existing policies and strategies related to energy and the environment. The significance is to grasp a clear picture on what types of policies and strategies Malaysia has in hand. In the future, this examination should be extended by drawing a comparison with other developed countries and highlighting several options for sustainable development.Keywords: Energy policies, energy efficiency, renewable energy, green building, Malaysia, sustainable development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663941 HDS: Alumina- Boria Supported Catalysts
Authors: Peyman Moradi, Matin Parvari
Abstract:
Hydrodesulfurization (HDS) of dibenzothiophene (DBT) in a high pressure batch reactor was done at 320 °C on CoMoS/Al2O3-B2O3 (4, 10, and 16 wt. % of Boria) using nhexadecane as solvent, dimethyldisulfide (DMDS) in tetradecane as sulfur agent, and stirring at 1000 rpm. The effects of boria were investigated by using X-ray diffraction (XRD), Temperature programmed desorption (TPD) of ammonia, and Brunauer-Emmet- Teller (BET) experiments. The results showed that the catalyst prepared with low boria content (4 wt. %) had HDS activity (in pseudo first order kinetic constant basis) value ~1.45 times higher to that of CoMoS/Al2O3 catalyst.Keywords: Alumina-boria mixed oxides, dibenzothiophene, hydrodesulfurization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860940 A Novel NIRS Index to Evaluate Brain Activity in Prefrontal Regions While Listening to First and Second Languages for Long Time Periods
Authors: Kensho Takahashi, Ko Watanabe, Takashi Kaburagi, Hiroshi Tanaka, Kajiro Watanabe, Yosuke Kurihara
Abstract:
Near-infrared spectroscopy (NIRS) has been widely used as a non-invasive method to measure brain activity, but it is corrupted by baseline drift noise. Here we present a method to measure regional cerebral blood flow as a derivative of NIRS output. We investigate whether, when listening to languages, blood flow can reasonably localize and represent regional brain activity or not. The prefrontal blood flow distribution pattern when advanced second-language listeners listened to a second language (L2) was most similar to that when listening to their first language (L1) among the patterns of mean and standard deviation. In experiments with 25 healthy subjects, the maximum blood flow was localized to the left BA46 of advanced listeners. The blood flow presented is robust to baseline drift and stably localizes regional brain activity.
Keywords: NIRS, oxy-hemoglobin, baseline drift, blood flow, working memory, BA46, first language, second language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277939 Use of Natural Fibers in Landfill Leachate Treatment
Authors: J. F. Marina Araujo, F. Marcus Vinicius Araujo, R. Daniella Mulinari
Abstract:
Due to the resultant leachate from waste decomposition in landfills has polluter potential hundred times greater than domestic sewage, this is considered a problem related to the depreciation of environment requiring pre-disposal treatment.In seeking to improve this situation, this project proposes the treatment of landfill leachate using natural fibers intercropped with advanced oxidation processes. The selected natural fibers were palm, coconut and banana fiber.These materials give sustainability to the project because, besides having adsorbent capacity, are often part of waste discarded. The study was conducted in laboratory scale.In trials, the effluents were characterized as Chemical Oxygen Demand (COD), Turbidity and Color. The results indicate that is technically promising since that there were extremely oxidative conditions, the use of certain natural fibers in the reduction of pollutants in leachate have been obtained results of COD removals between 67.9% and 90.9%, Turbidity between 88.0% and 99.7% and Color between 67.4% and 90.4%.The expectation generated is to continue evaluating the association of efficiency of other natural fibers with other landfill leachate treatment processes.Keywords: Landfill leachate, chemical treatment, natural Fibers, advanced oxidation processes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2626938 Pulsation Suppression Device Design for Reciprocating Compressor
Authors: Amin Almasi
Abstract:
Design and evaluation of reciprocating compressors should include a pulsation study. The object is to ensure that predicted pulsation levels meet guidelines to limit vibration, shaking forces, noise, associated pressure drops, horsepower losses and fabrication cost and time to acceptable levels. This paper explains procedures and recommendations to select and size pulsation suppression devices to obtain optimum arrangement in terms of pulsation, vibration, shaking forces, performance, reliability, safety, operation, maintenance and commercial conditions. Model and advanced formulations for pulsation study are presented. The effect of the full fluid dynamic model on the prediction of pulsation waves and resulting frequency spectrum distributions are discussed. Advanced and optimum methods of controlling pulsations are highlighted. Useful recommendations and guidelines for pulsation control, piping pulsation analysis, pulsation vessel design, shaking forces, low pressure drop orifices, pulsation study report and devices to mitigate pulsation and shaking problems are discussed.Keywords: Pulsation, Reciprocating Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8835937 Stage-Gate Framework Application for Innovation Assessment among Small and Medium-Sized Enterprises
Authors: Indre Brazauskaite, Vilte Auruskeviciene
Abstract:
The paper explores the Stage-Gate framework application for innovation maturity among small and medium-sized enterprises (SMEs). Innovation management becomes an essential business survival process for all sizes of organizations that can be evaluated and audited systemically. This research systemically defines and assesses the innovation process from the perspective of the company’s top management. Empirical research explores attitudes and existing practices of innovation management in SMEs in Baltic countries. It structurally investigates the current innovation management practices, level of standardization, and potential challenges in the area. Findings allow to structure of existing practices based on an institutionalized model and contribute to a more advanced understanding of the innovation process among SMEs. Practically, findings contribute to advanced decision-making and business planning in the process.
Keywords: innovation measure, innovation process, small and medium-sized enterprises, SMEs, stage-gate framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166936 Catalytic Cracking of Butene to Propylene over Modified HZSM-5 Zeolites
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
Catalytic cracking of butene to propylene was carried out in a continuous-flow fixed-bed reactor over HZSM-5 catalysts modified by nickel and phosphorus. The structure and acidity of catalysts were measured by N2 adsorption, NH3-TPD and XPS. The results revealed that surface area and strong acid sites both decreased with increasing phosphorus loadings. The increment of phosphorus loadings reduced the butene conversion but enhanced the propylene selectivity and catalyst stability.
Keywords: Butene, catalytic cracking, HZSM-5, modification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3183935 Three Dimensional Modeling of Mixture Formation and Combustion in a Direct Injection Heavy-Duty Diesel Engine
Authors: A. R. Binesh, S. Hossainpour
Abstract:
Due to the stringent legislation for emission of diesel engines and also increasing demand on fuel consumption, the importance of detailed 3D simulation of fuel injection, mixing and combustion have been increased in the recent years. In the present work, FIRE code has been used to study the detailed modeling of spray and mixture formation in a Caterpillar heavy-duty diesel engine. The paper provides an overview of the submodels implemented, which account for liquid spray atomization, droplet secondary break-up, droplet collision, impingement, turbulent dispersion and evaporation. The simulation was performed from intake valve closing (IVC) to exhaust valve opening (EVO). The predicted in-cylinder pressure is validated by comparing with existing experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions collected with the present work. Predictions of engine emissions were also performed and a good quantitative agreement between measured and predicted NOx and soot emission data were obtained with the use of the present Zeldowich mechanism and Hiroyasu model. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the internal combustion engine design, optimization and performance analysis.Keywords: Diesel engine, Combustion, Pollution, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947934 Distributed Coordination of Connected and Automated Vehicles at Multiple Interconnected Intersections
Authors: Zhiyuan Du, Baisravan Hom Chaudhuri, Pierluigi Pisu
Abstract:
In connected vehicle systems where wireless communication is available among the involved vehicles and intersection controllers, it is possible to design an intersection coordination strategy that leads the connected and automated vehicles (CAVs) travel through the road intersections without the conventional traffic light control. In this paper, we present a distributed coordination strategy for the CAVs at multiple interconnected intersections that aims at improving system fuel efficiency and system mobility. We present a distributed control solution where in the higher level, the intersection controllers calculate the road desired average velocity and optimally assign reference velocities of each vehicle. In the lower level, every vehicle is considered to use model predictive control (MPC) to track their reference velocity obtained from the higher level controller. The proposed method has been implemented on a simulation-based case with two-interconnected intersection network. Additionally, the effects of mixed vehicle types on the coordination strategy has been explored. Simulation results indicate the improvement on vehicle fuel efficiency and traffic mobility of the proposed method.
Keywords: Connected vehicles, automated vehicles, intersection coordination systems, multiple interconnected intersections, model predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848933 Utilization of Advanced Data Storage Technology to Conduct Construction Industry on Clear Environment
Authors: Javad Majrouhi Sardroud, Mukesh C. Limbachiya
Abstract:
Construction projects generally take place in uncontrolled and dynamic environments where construction waste is a serious environmental problem in many large cities. The total amount of waste and carbon dioxide emissions from transportation vehicles are still out of control due to increasing construction projects, massive urban development projects and the lack of effective tools for minimizing adverse environmental impacts in construction. This research is about utilization of the integrated applications of automated advanced tracking and data storage technologies in the area of environmental management to monitor and control adverse environmental impacts such as construction waste and carbon dioxide emissions. Radio Frequency Identification (RFID) integrated with the Global Position System (GPS) provides an opportunity to uniquely identify materials, components, and equipments and to locate and track them using minimal or no worker input. The transmission of data to the central database will be carried out with the help of Global System for Mobile Communications (GSM).Keywords: Clear environment, Construction industry, RFID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868932 Saving Energy through Scalable Architecture
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
In this paper, we focus on the importance of scalable architecture for data centers and buildings in general to help an enterprise achieve environmental sustainability. The scalable architecture helps in many ways, such as adaptability to the business and user requirements, promotes high availability and disaster recovery solutions that are cost effective and low maintenance. The scalable architecture also plays a vital role in three core areas of sustainability: economy, environment, and social, which are also known as the 3 pillars of a sustainability model. If the architecture is scalable, it has many advantages. A few examples are that scalable architecture helps businesses and industries to adapt to changing technology, drive innovation, promote platform independence, and build resilience against natural disasters. Most importantly, having a scalable architecture helps industries bring in cost-effective measures for energy consumption, reduce wastage, increase productivity, and enable a robust environment. It also helps in the reduction of carbon emissions with advanced monitoring and metering capabilities. Scalable architectures help in reducing waste by optimizing the designs to utilize materials efficiently, minimize resources, decrease carbon footprints by using low-impact materials that are environmentally friendly. In this paper we also emphasize the importance of cultural shift towards the reuse and recycling of natural resources for a balanced ecosystem and maintain a circular economy. Also, since all of us are involved in the use of computers, much of the scalable architecture we have studied is related to data centers.
Keywords: Scalable Architectures, Sustainability, Application Design, Disruptive Technology, Machine Learning, Natural Language Processing, AI, Social Media Platform, Cloud Computing, Advanced Networking, Storage Devices, Advanced Monitoring, Metering Infrastructure, Climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58931 A New Algorithm for Solving Isothermal Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A new algorithm based on the lattice Boltzmann method (LBM) is proposed as a potential solver for one-dimensional heat and mass transfer for isothermal carbonization of wood particles. To check the validity of this algorithm, the LBM results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and particle size on the evolution of the local temperature and mass loss inside the wood particle.
Keywords: Lattice Boltzmann Method, pyrolysis, conduction, carbonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632930 Design of Adaptive Controller Based On Lyapunov Stability for a CSTR
Abstract:
Nonlinearity is the inherent characteristics of all the industrial processes. The Classical control approach used for a generation often fails to show better results particularly for non-linear systems and in the systems, whose parameters changes over a period of time for a variety of reasons. Alternatively, adaptive control strategies provide very good performance. The Model Reference Adaptive Control based on Lyapunov stability analysis and classical PI control strategies are designed and evaluated for Continuous Stirred Tank Reactor, which shows appreciable dynamic nonlinear characteristics.
Keywords: Adaptive Control, CSTR, Lyapunov stability, MRAS, PID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4465929 Evaluation of Service Continuity in a Self-organizing IMS
Authors: Satoshi Komorita, Tsunehiko Chiba, Hidetoshi Yokota, Ashutosh Dutta, Christian Makaya, Subir Das, Dana Chee, F. Joe Lin, Henning Schulzrinne
Abstract:
The NGN (Next Generation Network), which can provide advanced multimedia services over an all-IP based network, has been the subject of much attention for years. While there have been tremendous efforts to develop its architecture and protocols, especially for IMS, which is a key technology of the NGN, it is far from being widely deployed. However, efforts to create an advanced signaling infrastructure realizing many requirements have resulted in a large number of functional components and interactions between those components. Thus, the carriers are trying to explore effective ways to deploy IMS while offering value-added services. As one such approach, we have proposed a self-organizing IMS. A self-organizing IMS enables IMS functional components and corresponding physical nodes to adapt dynamically and automatically based on situation such as network load and available system resources while continuing IMS operation. To realize this, service continuity for users is an important requirement when a reconfiguration occurs during operation. In this paper, we propose a mechanism that will provide service continuity to users and focus on the implementation and describe performance evaluation in terms of number of control signaling and processing time during reconfigurationKeywords: IMS, SIP, Service Continuity, Self-organizing, and Performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598928 Eye-Gesture Analysis for Driver Hazard Awareness
Authors: Siti Nor Hafizah binti Mohd Zaid, Mohamed Abdel-Maguid, Abdel-Hamid Soliman
Abstract:
Because road traffic accidents are a major source of death worldwide, attempts have been made to create Advanced Driver Assistance Systems (ADAS) able to detect vehicle, driver and environmental conditions that are cues for possible potential accidents. This paper presents continued work on a novel Nonintrusive Intelligent Driver Assistance and Safety System (Ni-DASS) for assessing driver attention and hazard awareness. It uses two onboard CCD cameras – one observing the road and the other observing the driver-s face. The windscreen is divided into cells and analysis of the driver-s eye-gaze patterns allows Ni-DASS to determine the windscreen cell the driver is focusing on using eye-gesture templates. Intersecting the driver-s field of view through the observed windscreen cell with subsections of the camera-s field of view containing a potential hazard allows Ni-DASS to estimate the probability that the driver has actually observed the hazard. Results have shown that the proposed technique is an accurate enough measure of driver observation to be useful in ADAS systems.Keywords: Advanced Driver Assistance Systems (ADAS), Driver Hazard Awareness, Driver Vigilance, Eye Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181927 Fuzzy Controller Design for TCSC to Improve Power Oscillations Damping
Authors: M Nayeripour, H. Khorsand, A. Roosta, T. Niknam, E. Azad
Abstract:
Series compensators have been used for many years, to increase the stability and load ability of transmission line. They compensate retarded or advanced volt drop of transmission lines by placing advanced or retarded voltage in series with them to compensate the effective reactance, which cause to increase load ability of transmission lines. In this paper, two method of fuzzy controller, based on power reference tracking and impedance reference tracking have been developed on TCSC controller in order to increase load ability and improving power oscillation damping of system. In these methods, fire angle of thyristors are determined directly through the special Rule-bases with the error and change of error as the inputs. The simulation results of two area four- machines power system show the good performance of power oscillation damping in system. Comparison of this method with classical PI controller shows the increasing speed of system response in power oscillation damping.Keywords: TCSC, Two area network, Fuzzy controller, Power oscillation damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997926 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364925 Computer Modeling and Plant-Wide Dynamic Simulation for Industrial Flare Minimization
Authors: Sujing Wang, Song Wang, Jian Zhang, Qiang Xu
Abstract:
Flaring emissions during abnormal operating conditions such as plant start-ups, shut-downs, and upsets in chemical process industries (CPI) are usually significant. Flare minimization can help to save raw material and energy for CPI plants, and to improve local environmental sustainability. In this paper, a systematic methodology based on plant-wide dynamic simulation is presented for CPI plant flare minimizations under abnormal operating conditions. Since off-specification emission sources are inevitable during abnormal operating conditions, to significantly reduce flaring emission in a CPI plant, they must be either recycled to the upstream process for online reuse, or stored somewhere temporarily for future reprocessing, when the CPI plant manufacturing returns to stable operation. Thus, the off-spec products could be reused instead of being flared. This can be achieved through the identification of viable design and operational strategies during normal and abnormal operations through plant-wide dynamic scheduling, simulation, and optimization. The proposed study includes three stages of simulation works: (i) developing and validating a steady-state model of a CPI plant; (ii) transiting the obtained steady-state plant model to the dynamic modeling environment; and refining and validating the plant dynamic model; and (iii) developing flare minimization strategies for abnormal operating conditions of a CPI plant via a validated plant-wide dynamic model. This cost-effective methodology has two main merits: (i) employing large-scale dynamic modeling and simulations for industrial flare minimization, which involves various unit models for modeling hundreds of CPI plant facilities; (ii) dealing with critical abnormal operating conditions of CPI plants such as plant start-up and shut-down. Two virtual case studies on flare minimizations for start-up operation (over 50% of emission savings) and shut-down operation (over 70% of emission savings) of an ethylene plant have been employed to demonstrate the efficacy of the proposed study.
Keywords: Flare minimization, large-scale modeling and simulation, plant shut-down, plant start-up.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736924 Experimental and Numerical Simulation of Fire in a Scaled Underground Station
Authors: Nuri Yucel, Muhammed Ilter Berberoglu, Salih Karaaslan, Nureddin Dinler
Abstract:
The objective of this study is to investigate fire behaviors, experimentally and numerically, in a scaled version of an underground station. The effect of ventilation velocity on the fire is examined. Fire experiments are simulated by burning 10 ml isopropyl alcohol fuel in a fire pool with dimensions 5cm x 10cm x 4 mm at the center of 1/100 scaled underground station model. A commercial CFD program FLUENT was used in numerical simulations. For air flow simulations, k-ω SST turbulence model and for combustion simulation, non-premixed combustion model are used. This study showed that, the ventilation velocity is increased from 1 m/s to 3 m/s the maximum temperature in the station is found to be less for ventilation velocity of 1 m/s. The reason for these experimental result lies on the relative dominance of oxygen supply effect on cooling effect. Without piston effect, maximum temperature occurs above the fuel pool. However, when the ventilation velocity increased the flame was tilted in the direction of ventilation and the location of maximum temperature moves along the flow direction. The velocities measured experimentally in the station at different locations are well matched by the CFD simulation results. The prediction of general flow pattern is satisfactory with the smoke visualization tests. The backlayering in velocity is well predicted by CFD simulation. However, all over the station, the CFD simulations predicted higher temperatures compared to experimental measurements.Keywords: Fire, underground station, flame propagation, CFDsimulation, k-ω SST turbulence model, non-premixed combustionmodel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643923 Oxidation of Carbon Monoxide in a Monolithic Reactor
Authors: S. Chauhan, T.P.K. Grewal, S.K. Aggarwal, V.K. Srivastava
Abstract:
Solution for the complete removal of carbon monoxide from the exhaust gases still poses a challenge to the researchers and this problem is still under development. Modeling for reduction of carbon monoxide is carried out using heterogeneous reaction using low cost non-noble metal based catalysts for the purpose of controlling emissions released to the atmosphere. A simple one-dimensional model was developed for the monolith using hopcalite catalyst. The converter is assumed to be an adiabatic monolith operating under warm-up conditions. The effect of inlet gas temperatures and catalyst loading on carbon monoxide reduction during cold start period in the converter is analysed.Keywords: carbon monoxide, catalytic, modeling, monolith
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570922 Design of a Grid for Preparation of high Density Granules from Dispersed Materials
Authors: Bogdan Il. Bogdanov, Dimitar R.Rusev, Yancho H. Hristov, Irena G. Markovska, Dimitar P.Georgiev
Abstract:
New design of a grid for preparation of high density granules with enhanced mechanical strength by granulation of dispersed materials is suggested. A method for hydrodynamic dimensioning of the grid depending on granulation conditions, hydrodynamic regime of the operation, dispersity and physicochemical characteristics of the materials to be granulated was suggested. The aim of the grid design is to solve the problems arising by the granulation of disperse materials.Keywords: fluidized bed reactor, granulation, porous silicatematerials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408921 Thermodynamic Attainable Region for Direct Synthesis of Dimethyl Ether from Synthesis Gas
Authors: Thulane Paepae, Tumisang Seodigeng
Abstract:
This paper demonstrates the use of a method of synthesizing process flowsheets using a graphical tool called the GH-plot and in particular, to look at how it can be used to compare the reactions of a combined simultaneous process with regard to their thermodynamics. The technique uses fundamental thermodynamic principles to allow the mass, energy and work balances locate the attainable region for chemical processes in a reactor. This provides guidance on what design decisions would be best suited to developing new processes that are more effective and make lower demands on raw material and energy usage.Keywords: Attainable region, dimethyl ether synthesis, mass balance, optimal reaction networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490920 Student Records Management System Using Smart Cards and Biometric Technology for Educational Institutions
Authors: Patrick O. Bobbie, Prince S. Attrams
Abstract:
In recent times, the rapid change in new technologies has spurred up the way and manner records are handled in educational institutions. Also, there is a need for reliable access and ease-of use to these records, resulting in increased productivity in organizations. In academic institutions, such benefits help in quality assessments, institutional performance, and assessments of teaching and evaluation methods. Students in educational institutions benefit the most when advanced technologies are deployed in accessing records. This research paper discusses the use of biometric technologies coupled with smartcard technologies to provide a unique way of identifying students and matching their data to financial records to grant them access to restricted areas such as examination halls. The system developed in this paper, has an identity verification component as part of its main functionalities. A systematic software development cycle of analysis, design, coding, testing and support was used. The system provides a secured way of verifying student’s identity and real time verification of financial records. An advanced prototype version of the system has been developed for testing purposes.Keywords: Biometrics, fingerprints, identity-verification, smartcards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052919 The Analysis and Simulation of TRACE in the Ultimate Response Guideline for Chinshan BWR/4 Nuclear Power Plant
Authors: J. R. Wang, H. T. Lin, H. C. Chen, C. Shih, S. W. Chen, S. C. Chiang, C. C. Liu
Abstract:
In this research, TRACE model of Chinshan BWR/4 nuclear power plant (NPP) has been developed for the simulation and analysis of ultimate response guideline (URG).The main actions of URG are the depressurization and low pressure water injection of reactor and containment venting. This research focuses to verify the URG efficiency under Fukushima-like conditions. TRACE analysis results show that the URG can keep the PCT below the criteria 1088.7 K under Fukushima-like conditions. It indicated that Chinshan NPP was safe.Keywords: BWR, TRACE, safety analysis, URG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344918 An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj
Authors: F. Boustani
Abstract:
Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.Keywords: Hydropower potential, Iran, SHP, Yasuj.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986917 Neutron Flux Characterization for Radioisotope Production at ETRR-2
Authors: A. M. Hassanain, Nader M. A. Mohamed, M. Naguib Aly, Alya A. Badawi, M. A. Gaheen
Abstract:
The thermal, epithermal and fast fluxes were calculated for three irradiation channels at Egypt Second Research Reactor (ETRR-2) using CITVAP code. The validity of the calculations was verified by experimental measurements. There are some deviations between measurements and calculations. This is due to approximations in the calculation models used, homogenization of regions, condensation of energy groups and uncertainty in nuclear data used. Neutron flux data for the three irradiation channels are now available. This would enable predicting the irradiation conditions needed for future radioisotope production.Keywords: ETRR-2, Neutron flux, Radioisotope production, CITVAP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2241916 Iranian Bazaars: The Illustration of Stable Thoughts
Authors: Aida Amirazodi
Abstract:
"Bazaar" is a Persian word from the language of Iranians of 2500 years ago which has entered the languages of other countries. “Bazaar", the trading or marketing place with the architectural principles and concerns, was formed in Iran because of the long experience of marketing. This has become a valuable inheritance of Islamic ideological civilization and Iranian advanced architecture and a model of Islamic-marketing places with spectacular elements and parts, and the place for economical, social and cultural exchanges. “Bazaars" are found in cities of Iran and many Islamic countries in west of Asia and north of Africa. With the stable structure and function as a symbol of social values, this place has become the economic center and the illustration of stable architecture and advanced principles. “Bazaars" as the heart of Iranian cities economy with several major and minor rows of shops, in closed and open areas, along a fixed line or branches with beautiful arcs, patios, and frameworks are among the main national inheritance of Iran and one of the important Iranian architectural treasures because of its Iranian nobility.
Keywords: Traditional Bazaar, Form of Bazaar, Iranian Architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748915 Affordable and Environmental Friendly Small Commuter Aircraft Improving European Mobility
Authors: Diego Giuseppe Romano, Gianvito Apuleo, Jiri Duda
Abstract:
Mobility is one of the most important societal needs for amusement, business activities and health. Thus, transport needs are continuously increasing, with the consequent traffic congestion and pollution increase. Aeronautic effort aims at smarter infrastructures use and in introducing greener concepts. A possible solution to address the abovementioned topics is the development of Small Air Transport (SAT) system, able to guarantee operability from today underused airfields in an affordable and green way, helping meanwhile travel time reduction, too. In the framework of Horizon2020, EU (European Union) has funded the Clean Sky 2 SAT TA (Transverse Activity) initiative to address market innovations able to reduce SAT operational cost and environmental impact, ensuring good levels of operational safety. Nowadays, most of the key technologies to improve passenger comfort and to reduce community noise, DOC (Direct Operating Costs) and pilot workload for SAT have reached an intermediate level of maturity TRL (Technology Readiness Level) 3/4. Thus, the key technologies must be developed, validated and integrated on dedicated ground and flying aircraft demonstrators to reach higher TRL levels (5/6). Particularly, SAT TA focuses on the integration at aircraft level of the following technologies [1]: 1) Low-cost composite wing box and engine nacelle using OoA (Out of Autoclave) technology, LRI (Liquid Resin Infusion) and advance automation process. 2) Innovative high lift devices, allowing aircraft operations from short airfields (< 800 m). 3) Affordable small aircraft manufacturing of metallic fuselage using FSW (Friction Stir Welding) and LMD (Laser Metal Deposition). 4) Affordable fly-by-wire architecture for small aircraft (CS23 certification rules). 5) More electric systems replacing pneumatic and hydraulic systems (high voltage EPGDS -Electrical Power Generation and Distribution System-, hybrid de-ice system, landing gear and brakes). 6) Advanced avionics for small aircraft, reducing pilot workload. 7) Advanced cabin comfort with new interiors materials and more comfortable seats. 8) New generation of turboprop engine with reduced fuel consumption, emissions, noise and maintenance costs for 19 seats aircraft. (9) Alternative diesel engine for 9 seats commuter aircraft. To address abovementioned market innovations, two different platforms have been designed: Reference and Green aircraft. Reference aircraft is a virtual aircraft designed considering 2014 technologies with an existing engine assuring requested take-off power; Green aircraft is designed integrating the technologies addressed in Clean Sky 2. Preliminary integration of the proposed technologies shows an encouraging reduction of emissions and operational costs of small: about 20% CO2 reduction, about 24% NOx reduction, about 10 db (A) noise reduction at measurement point and about 25% DOC reduction. Detailed description of the performed studies, analyses and validations for each technology as well as the expected benefit at aircraft level are reported in the present paper.
Keywords: Affordable, European, green, mobility, technologies development, travel time reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537914 Urban Corridor Management Strategy Based on Intelligent Transportation System
Authors: Sourabh Jain, Sukhvir Singh Jain, Gaurav V. Jain
Abstract:
Intelligent Transportation System (ITS) is the application of technology for developing a user–friendly transportation system for urban areas in developing countries. The goal of urban corridor management using ITS in road transport is to achieve improvements in mobility, safety, and the productivity of the transportation system within the available facilities through the integrated application of advanced monitoring, communications, computer, display, and control process technologies, both in the vehicle and on the road. This paper attempts to present the past studies regarding several ITS available that have been successfully deployed in urban corridors of India and abroad, and to know about the current scenario and the methodology considered for planning, design, and operation of Traffic Management Systems. This paper also presents the endeavor that was made to interpret and figure out the performance of the 27.4 Km long study corridor having eight intersections and four flyovers. The corridor consisting of 6 lanes as well as 8 lanes divided road network. Two categories of data were collected on February 2016 such as traffic data (traffic volume, spot speed, delay) and road characteristics data (no. of lanes, lane width, bus stops, mid-block sections, intersections, flyovers). The instruments used for collecting the data were video camera, radar gun, mobile GPS and stopwatch. From analysis, the performance interpretations incorporated were identification of peak hours and off peak hours, congestion and level of service (LOS) at mid blocks, delay followed by the plotting speed contours and recommending urban corridor management strategies. From the analysis, it is found that ITS based urban corridor management strategies will be useful to reduce congestion, fuel consumption and pollution so as to provide comfort and efficiency to the users. The paper presented urban corridor management strategies based on sensors incorporated in both vehicles and on the roads.
Keywords: Congestion, ITS Strategies, Mobility, Safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659913 Effect of Needle Height on Discharge Coefficient and Cavitation Number
Authors: Azadeh Yazdi, Mohammadreza Nezamirad, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi
Abstract:
Cavitation inside diesel injector nozzle is investigated using Reynolds-Stress-Navier stokes equations. Schnerr-Sauer cavitation model is used for modeling cavitation inside diesel injector nozzle. The carrying fluid utilized in the current study is diesel fuel. The flow is verified at the beginning by comparing with the previous experimental data and it was found that K-Epsilon turbulent model could lead to a better accuracy comparing to K-Omega turbulent model. Moreover, mass flow rate obtained numerically is compared with the experimental value and discrepancy was found to be less than 5% - which shows the accuracy of the current results. Finally, a real-size four-hole nozzle is investigated and the flow inside it is visualized based on velocity profile, discharge coefficient and cavitation number. It was found that the mesh density could be reduced significantly by utilizing periodic boundary condition. Velocity contour at the mid nozzle showed that maximum value of velocity occurs at the end of the needle before entering the orifice area. Last but not least, at the same boundary conditions, when different needle heights were utilized, it was found that as needle height increases with an increase in cavitation number, discharge coefficient increases, while the mentioned increases is more tangible at smaller values of needle heights.
Keywords: cavitation, diesel fuel, CFD, real size nozzle, mass flow rate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523