Search results for: learning resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3192

Search results for: learning resources

2712 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
2711 Availability, Accessibility and Utilization of Information and Communication Technology in Teaching and Learning Islamic Studies in Colleges of Education, North-Eastern, Nigeria

Authors: Bello Ali

Abstract:

The use of Information and Communication Technology (ICT) in tertiary institutions by lecturers and students has become a necessity for the enhancement of quality teaching and learning. This study examined availability, accessibility and utilization of ICT in Teaching-Learning Islamic Studies in Colleges of Education, North-East, Nigeria. The study adopted multi-stage sampling technique, in which, five out of the eleven Colleges of Education (both Federal and State owned) were purposively selected for the study. Primary data was drawn from the respondents by the use of questionnaire, interviews and observations. The results of the study, generally, indicate that the availability and accessibility to ICT facilities in Colleges of Education in North-East, Nigeria, especially in teaching/learning delivery of Islamic studies were relatively inadequate and rare to lecturers and students. The study further reveals that the respondents’ level of utilization of ICT is low and only few computer packages and internet services were involved in the ICT utilization, which is yet to reach the real expected situation of the globalization and advancement in the application of ICT if compared to other parts of the world, as far as the teaching and learning of Islamic studies is concerned. Observations and conclusion were drawn from the findings and finally, recommendations on how to improve on ICT availability, accessibility and utilization in teaching/ learning were suggested.

Keywords: Accessibility, availability, college of education, ICT, Islamic Studies, learning, North-Eastern, teaching, utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1132
2710 Utilizing Virtual Worlds in Education: The Implications for Practice

Authors: Teresa Coffman, Mary Beth Klinger

Abstract:

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

Keywords: Virtual Environments, MUVEs, Constructivist, Distance Learning, Learner Centered.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
2709 Development of Active Learning Calculus Course for Biomedical Program

Authors: Mikhail Bouniaev

Abstract:

The paper reviews design and implementation of a Calculus Course required for the Biomedical Competency Based Program developed as a joint project between The University of Texas Rio Grande Valley, and the University of Texas’ Institute for Transformational Learning, from the theoretical perspective as presented in scholarly work on active learning, formative assessment, and on-line teaching. Following a four stage curriculum development process (objective, content, delivery, and assessment), and theoretical recommendations that guarantee effectiveness and efficiency of assessment in active learning, we discuss the practical recommendations on how to incorporate a strong formative assessment component to address disciplines’ needs, and students’ major needs. In design and implementation of this project, we used Constructivism and Stage-by-Stage Development of Mental Actions Theory recommendations.

Keywords: Active learning, assessment, Calculus, cognitive demand, constructivism, mathematics, Stage-by-Stage Development of Mental Action Theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2708 Using Interval Trees for Approximate Indexing of Instances

Authors: Khalil el Hindi

Abstract:

This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.

Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1510
2707 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1370
2706 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program, was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content, and achieved better educational results in chemistry, when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" – i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: Chemistry class, e-learning, online test, Testmoz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
2705 Bilingual Gaming Kit to Teach English Language through Collaborative Learning

Authors: Sarayu Agarwal

Abstract:

This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.

Keywords: English as a second language, vocabulary-building, learning through gamification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
2704 Digital Learning and Entrepreneurship Education: Changing Paradigms

Authors: Shivangi Agrawal, Hsiu-I Ting

Abstract:

Entrepreneurship is an essential source of economic growth and a prominent factor influencing socio-economic development. Entrepreneurship education educates and enhances entrepreneurial activity. This study aims to understand current trends in entrepreneurship education and evaluate the effectiveness of diverse entrepreneurship education programs. An increasing number of universities offer entrepreneurship education courses to create and successfully continue entrepreneurial ventures. Despite the prevalence of entrepreneurship education, research studies lack inconsistency about the effectiveness of entrepreneurship education to promote and develop entrepreneurship. Strategies to develop entrepreneurial attitudes and intentions among individuals are hindered by a lack of understanding of entrepreneurs' educational purposes, components, methodology, and resources required. Lack of adequate entrepreneurship education has been linked with low self-efficacy and lack of entrepreneurial intent. Moreover, in the age of digitisation and during the COVID-19 pandemic, digital learning platforms (e.g. online entrepreneurship education courses and programs) and other digital tools (e.g. digital game-based entrepreneurship education) have become more relevant to entrepreneurship education. This paper contributes to the continuation of academic literature in entrepreneurship education by evaluating and assessing current trends in entrepreneurship education programs, leading to better understanding to reduce gaps between entrepreneurial development requirements and higher education institutions.

Keywords: entrepreneurship education, digital technologies, academic entrepreneurship, COVID-19

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1706
2703 The Pedagogical Integration of Digital Technologies in Initial Teacher Training

Authors: Vânia Graça, Paula Quadros-Flores, Altina Ramos

Abstract:

The use of Digital Technologies in teaching and learning processes is currently a reality, namely in initial teacher training. This study aims at knowing the digital reality of students in initial teacher training in order to improve training in the educational use of ICT and to promote digital technology integration strategies in an educational context. It is part of the IFITIC Project "Innovate with ICT in Initial Teacher Training to Promote Methodological Renewal in Pre-school Education and in the 1st and 2nd Basic Education Cycle" which involves the School of Education, Polytechnic of Porto and Institute of Education, University of Minho. The Project aims at rethinking educational practice with ICT in the initial training of future teachers in order to promote methodological innovation in Pre-school Education and in the 1st and 2nd Cycles of Basic Education. A qualitative methodology was used, in which a questionnaire survey was applied to teachers in initial training. For data analysis, the techniques of content analysis with the support of NVivo software were used. The results point to the following aspects: a) future teachers recognize that they have more technical knowledge about ICT than pedagogical knowledge. This result makes sense if we consider the objective of Basic Education, so that the gaps can be filled in the Master's Course by students who wish to follow the teaching; b) the respondents are aware that the integration of digital resources contributes positively to students' learning and to the life of children and young people, which also promotes preparation in life; c) to be a teacher in the digital age there is a need for the development of digital literacy, lifelong learning and the adoption of new ways of teaching how to learn. Thus, this study aims to contribute to a reflection on the teaching profession in the digital age.

Keywords: Digital technologies, initial teacher training, pedagogical use of ICT, skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 600
2702 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1078
2701 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
2700 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels

Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad

Abstract:

The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.

Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2265
2699 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
2698 The Human Resources Management for the Temple in Northeastern Thailand

Authors: Routsukol Sunalai

Abstract:

This research purpose is to study and compare the administration of Buddhist monks at northeastern Thailand. The samples used in the study are the priest in the Northeast by simple random sampling for 190 sampling. The tools used in this study is questioner were created in the 40 question items. The statistics used for data analysis were percentage, average, and standard deviation. The research found that the human resources management for the Buddhist monks as a whole is moderate. But it was found that the highest average is the policy followed by the management information. The Buddhist monks aged less than 25 years old with the overall difference was not significant. The priests who are less than 10 years in the monk experience and the priest has long held in the position for 10 years are not different in the significant level.

Keywords: Buddhist monks, human resources management, Northeastern Thailand, hotel industry, the administration of Buddhist monks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
2697 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
2696 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
2695 Determination of Skills Gap between School-Based Learning and Laboratory-Based Learning in Omar Al-Mukhtar University

Authors: Aisha Othman, Crinela Pislaru, Ahmed Impes

Abstract:

This paper provides an identification of the existing practical skills gap between school-based learning (SBL) and laboratory based learning (LBL) in the Computing Department within the Faculty of Science at Omar Al-Mukhtar University in Libya. A survey has been conducted and the first author has elicited the responses of two groups of stakeholders, namely the academic teachers and students.

The primary goal is to review the main strands of evidence available and argue that there is a gap between laboratory and school-based learning in terms of opportunities for experiment and application of skills. In addition, the nature of experimental work within the laboratory at Omar Al-Mukhtar University needs to be reconsidered. Another goal of our study was to identify the reasons for students’ poor performance in the laboratory and to determine how this poor performance can be eliminated by the modification of teaching methods. Bloom’s taxonomy of learning outcomes has been applied in order to classify questions and problems into categories, and the survey was formulated with reference to third year Computing Department students. Furthermore, to discover students’ opinions with respect to all the issues, an exercise was conducted. The survey provided questions related to what the students had learnt and how well they had learnt. We were also interested in feedback on how to improve the course and the final question provided an opportunity for such feedback.

Keywords: Bloom’s taxonomy, e-learning, Omar Al-Mukhtar University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
2694 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
2693 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
2692 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya

Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson

Abstract:

The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.

Keywords: Coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 959
2691 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2003
2690 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: Learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
2689 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning

Authors: Romisaa Ali

Abstract:

This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.

Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
2688 Generalized Exploratory Model of Human Category Learning

Authors: Toshihiko Matsuka

Abstract:

One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.

Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
2687 Relational Representation in XCSF

Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh

Abstract:

Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier.

Keywords: Classifier Systems, Reinforcement Learning, Relational Representation, XCSF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
2686 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: Digital divide, digital learning, digitization, Sri Lanka, teaching methodologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
2685 Start Talking in an e-Learning Environment: Building and Sustaining Communities of Practice

Authors: Melissa C. LaDuke

Abstract:

The purpose of this targeted analysis was to identify the use of online communities of practice (CoP) within e-learning environments as a method to build social interaction and student-centered educational experiences. A literature review was conducted to survey and collect scholarly thoughts concerning CoPs from a variety of sources. Data collected included best practices, ties to educational theories, and examples of online CoPs. Social interaction has been identified as a critical piece of the learning infrastructure, specifically for adult learners. CoPs are an effective way to help students connect to each other and the material of interest. The use of CoPs falls in line with many educational theories, including situated learning theory, social constructivism, connectivism, adult learning theory, and motivation. New literacies such as social media and gamification can help increase social interaction in online environments and provide methods to host CoPs. Steps to build and sustain a CoP were discussed in addition to CoP considerations and best practices.

Keywords: Community of practice, knowledge sharing, social interaction, online course design, new literacies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225
2684 Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment

Authors: M. Bohlouli, M. Analoui

Abstract:

For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.

Keywords: Active Database, Grid Computing, ResourceRequirement Prediction, Scheduling,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
2683 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796