Search results for: Genetic algorithm optimization
26 Stochastic Simulation of Reaction-Diffusion Systems
Authors: Paola Lecca, Lorenzo Dematte
Abstract:
Reactiondiffusion systems are mathematical models that describe how the concentration of one or more substances distributed in space changes under the influence of local chemical reactions in which the substances are converted into each other, and diffusion which causes the substances to spread out in space. The classical representation of a reaction-diffusion system is given by semi-linear parabolic partial differential equations, whose general form is ÔêétX(x, t) = DΔX(x, t), where X(x, t) is the state vector, D is the matrix of the diffusion coefficients and Δ is the Laplace operator. If the solute move in an homogeneous system in thermal equilibrium, the diffusion coefficients are constants that do not depend on the local concentration of solvent and of solutes and on local temperature of the medium. In this paper a new stochastic reaction-diffusion model in which the diffusion coefficients are function of the local concentration, viscosity and frictional forces of solvent and solute is presented. Such a model provides a more realistic description of the molecular kinetics in non-homogenoeus and highly structured media as the intra- and inter-cellular spaces. The movement of a molecule A from a region i to a region j of the space is described as a first order reaction Ai k- → Aj , where the rate constant k depends on the diffusion coefficient. Representing the diffusional motion as a chemical reaction allows to assimilate a reaction-diffusion system to a pure reaction system and to simulate it with Gillespie-inspired stochastic simulation algorithms. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the specific speed of reaction and diffusion events. Redi is the software tool, developed to implement the model of reaction-diffusion kinetics and dynamics. It is a free software, that can be downloaded from http://www.cosbi.eu. To demonstrate the validity of the new reaction-diffusion model, the simulation results of the chaperone-assisted protein folding in cytoplasm obtained with Redi are reported. This case study is redrawing the attention of the scientific community due to current interests on protein aggregation as a potential cause for neurodegenerative diseases.
Keywords: Reaction-diffusion systems, Fick's law, stochastic simulation algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173825 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy
Authors: May Fadheel Estephan, Richard Perks
Abstract:
Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a non-invasive optical technique that can be used to characterize the size and concentration of particles in a solution. An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2 μm, 0.8 μm, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a non-invasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a non-invasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.
Keywords: Elastic Light Scattering Spectroscopy, Polystyrene spheres in suspension, optical probe, fibre optics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14124 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.
Keywords: Sustainability, constructions ecology, composite structure model, design structure matrix, environmental impact assessment, life cycle analysis, climate change.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143523 Power and Delay Optimized Graph Representation for Combinational Logic Circuits
Authors: Padmanabhan Balasubramanian, Karthik Anantha
Abstract:
Structural representation and technology mapping of a Boolean function is an important problem in the design of nonregenerative digital logic circuits (also called combinational logic circuits). Library aware function manipulation offers a solution to this problem. Compact multi-level representation of binary networks, based on simple circuit structures, such as AND-Inverter Graphs (AIG) [1] [5], NAND Graphs, OR-Inverter Graphs (OIG), AND-OR Graphs (AOG), AND-OR-Inverter Graphs (AOIG), AND-XORInverter Graphs, Reduced Boolean Circuits [8] does exist in literature. In this work, we discuss a novel and efficient graph realization for combinational logic circuits, represented using a NAND-NOR-Inverter Graph (NNIG), which is composed of only two-input NAND (NAND2), NOR (NOR2) and inverter (INV) cells. The networks are constructed on the basis of irredundant disjunctive and conjunctive normal forms, after factoring, comprising terms with minimum support. Construction of a NNIG for a non-regenerative function in normal form would be straightforward, whereas for the complementary phase, it would be developed by considering a virtual instance of the function. However, the choice of best NNIG for a given function would be based upon literal count, cell count and DAG node count of the implementation at the technology independent stage. In case of a tie, the final decision would be made after extracting the physical design parameters. We have considered AIG representation for reduced disjunctive normal form and the best of OIG/AOG/AOIG for the minimized conjunctive normal forms. This is necessitated due to the nature of certain functions, such as Achilles- heel functions. NNIGs are found to exhibit 3.97% lesser node count compared to AIGs and OIG/AOG/AOIGs; consume 23.74% and 10.79% lesser library cells than AIGs and OIG/AOG/AOIGs for the various samples considered. We compare the power efficiency and delay improvement achieved by optimal NNIGs over minimal AIGs and OIG/AOG/AOIGs for various case studies. In comparison with functionally equivalent, irredundant and compact AIGs, NNIGs report mean savings in power and delay of 43.71% and 25.85% respectively, after technology mapping with a 0.35 micron TSMC CMOS process. For a comparison with OIG/AOG/AOIGs, NNIGs demonstrate average savings in power and delay by 47.51% and 24.83%. With respect to device count needed for implementation with static CMOS logic style, NNIGs utilize 37.85% and 33.95% lesser transistors than their AIG and OIG/AOG/AOIG counterparts.Keywords: AND-Inverter Graph, OR-Inverter Graph, DirectedAcyclic Graph, Low power design, Delay optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205222 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks
Authors: Fazıl Gökgöz, Fahrettin Filiz
Abstract:
Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.Keywords: Deep learning, long-short-term memory, energy, renewable energy load forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159621 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support operational decisions in Emergency Medical Service (EMS) systems regarding the assignment of medical emergency requests to Emergency Departments (ED). This problem is called “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of a first phase of review of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a mission. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the travelling time and to free-up the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs also considering the expected time performance in the subsequent phases of the process, such as the case mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to compare different hospital selection policies. The model was implemented with the AnyLogic software and finally validated on a realistic case. The hospital selection policy that returned the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, based on a retrospective estimation of the TTP, and a dynamic approach, focused on a predictive estimation of the TTP which is determined with a constantly updated Winters forecasting model. Findings reveal that considering the minimization of TTP is the best hospital selection policy. It allows to significantly reducing service throughput times in the ED with a negligible increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms on TTP estimation, than a retrospective approach. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.
Keywords: Emergency medical services, hospital selection, discrete event simulation, forecast model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23320 Per Flow Packet Scheduling Scheme to Improve the End-to-End Fairness in Mobile Ad Hoc Wireless Network
Authors: K. Sasikala, R. S. D Wahidabanu
Abstract:
Various fairness models and criteria proposed by academia and industries for wired networks can be applied for ad hoc wireless network. The end-to-end fairness in an ad hoc wireless network is a challenging task compared to wired networks, which has not been addressed effectively. Most of the traffic in an ad hoc network are transport layer flows and thus the fairness of transport layer flows has attracted the interest of the researchers. The factors such as MAC protocol, routing protocol, the length of a route, buffer size, active queue management algorithm and the congestion control algorithms affects the fairness of transport layer flows. In this paper, we have considered the rate of data transmission, the queue management and packet scheduling technique. The ad hoc network is dynamic in nature due to various parameters such as transmission of control packets, multihop nature of forwarding packets, changes in source and destination nodes, changes in the routing path influences determining throughput and fairness among the concurrent flows. In addition, the effect of interaction between the protocol in the data link and transport layers has also plays a role in determining the rate of the data transmission. We maintain queue for each flow and the delay information of each flow is maintained accordingly. The pre-processing of flow is done up to the network layer only. The source and destination address information is used for separating the flow and the transport layer information is not used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and the transport layer information is used. This minimizes the delay in the network. Each flow is attached to a timer and is updated dynamically. Finite State Machine (FSM) is proposed for queue and transmission control mechanism. The performance of the proposed approach is evaluated in ns-2 simulation environment. The throughput and fairness based on not mobility for different flows used as performance metrics. We have compared the performance of the proposed approach with ATP and MC-MLAS and the performance of the proposed approach is encouraging.
Keywords: ATP, End-to-End fairness, FSM, MAC, QoS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 198619 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller
Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian
Abstract:
The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.
Keywords: Air flow, biomass combustion, feedback control system, fuel feeding, ladder logic, programmable logic controller, temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58518 Comparison between Conventional Bacterial and Algal-Bacterial Aerobic Granular Sludge Systems in the Treatment of Saline Wastewater
Authors: Philip Semaha, Zhongfang Lei, Ziwen Zhao, Sen Liu, Zhenya Zhang, Kazuya Shimizu
Abstract:
The increasing generation of saline wastewater through various industrial activities is becoming a global concern for activated sludge (AS) based biological treatment which is widely applied in wastewater treatment plants (WWTPs). As for the AS process, an increase in wastewater salinity has negative impact on its overall performance. The advent of conventional aerobic granular sludge (AGS) or bacterial AGS biotechnology has gained much attention because of its superior performance. The development of algal-bacterial AGS could enhance better nutrients removal, potentially reduce aeration cost through symbiotic algae-bacterial activity, and thus, can also reduce overall treatment cost. Nonetheless, the potential of salt stress to decrease biomass growth, microbial activity and nutrient removal exist. Up to the present, little information is available on saline wastewater treatment by algal-bacterial AGS. To the authors’ best knowledge, a comparison of the two AGS systems has not been done to evaluate nutrients removal capacity in the context of salinity increase. This study sought to figure out the impact of salinity on the algal-bacterial AGS system in comparison to bacterial AGS one, contributing to the application of AGS technology in the real world of saline wastewater treatment. In this study, the salt concentrations tested were 0 g/L, 1 g/L, 5 g/L, 10 g/L and 15 g/L of NaCl with 24-hr artificial illuminance of approximately 97.2 µmol m¯²s¯¹, and mature bacterial and algal-bacterial AGS were used for the operation of two identical sequencing batch reactors (SBRs) with a working volume of 0.9 L each, respectively. The results showed that salinity increase caused no apparent change in the color of bacterial AGS; while for algal-bacterial AGS, its color was progressively changed from green to dark green. A consequent increase in granule diameter and fluffiness was observed in the bacterial AGS reactor with the increase of salinity in comparison to a decrease in algal-bacterial AGS diameter. However, nitrite accumulation peaked from 1.0 mg/L and 0.4 mg/L at 1 g/L NaCl in the bacterial and algal-bacterial AGS systems, respectively to 9.8 mg/L in both systems when NaCl concentration varied from 5 g/L to 15 g/L. Almost no ammonia nitrogen was detected in the effluent except at 10 g/L NaCl concentration, where it averaged 4.2 mg/L and 2.4 mg/L, respectively, in the bacterial and algal-bacterial AGS systems. Nutrients removal in the algal-bacterial system was relatively higher than the bacterial AGS in terms of nitrogen and phosphorus removals. Nonetheless, the nutrient removal rate was almost 50% or lower. Results show that algal-bacterial AGS is more adaptable to salinity increase and could be more suitable for saline wastewater treatment. Optimization of operation conditions for algal-bacterial AGS system would be important to ensure its stably high efficiency in practice.Keywords: Algal-bacterial aerobic granular sludge, bacterial aerobic granular sludge, nutrients removal, saline wastewater, sequencing batch reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117617 Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling
Authors: Mohammed El Raey, Moustafa Osman Mohammed
Abstract:
The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s system. Naturally exchanged patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s system. The Probabilistic Risk Assessment (PRA) technique is utilized to assess the safety of an industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA-safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and rural areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is predicted for multiple factors distribution schemes of multi-criteria analysis. The input–output analysis is explored from the spillover effect, and we conducted Monte Carlo simulations for sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the composite index for biosphere with collective structure of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in an artistic/architectural perspective. The hypothesis is deployed to unify analytic and analogical spatial structure in development urban environments using optimization loads as an example of integrated industrial structure where the process is based on engineering topology of systems ecology.
Keywords: Spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25416 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.
Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59015 Optimization of the Characteristic Straight Line Method by a “Best Estimate“ of Observed, Normal Orthometric Elevation Differences
Authors: Mahmoud M. S. Albattah
Abstract:
In this paper, to optimize the “Characteristic Straight Line Method" which is used in the soil displacement analysis, a “best estimate" of the geodetic leveling observations has been achieved by taking in account the concept of 'Height systems'. This concept has been discussed in detail and consequently the concept of “height". In landslides dynamic analysis, the soil is considered as a mosaic of rigid blocks. The soil displacement has been monitored and analyzed by using the “Characteristic Straight Line Method". Its characteristic components have been defined constructed from a “best estimate" of the topometric observations. In the measurement of elevation differences, we have used the most modern leveling equipment available. Observational procedures have also been designed to provide the most effective method to acquire data. In addition systematic errors which cannot be sufficiently controlled by instrumentation or observational techniques are minimized by applying appropriate corrections to the observed data: the level collimation correction minimizes the error caused by nonhorizontality of the leveling instrument's line of sight for unequal sight lengths, the refraction correction is modeled to minimize the refraction error caused by temperature (density) variation of air strata, the rod temperature correction accounts for variation in the length of the leveling rod' s Invar/LO-VAR® strip which results from temperature changes, the rod scale correction ensures a uniform scale which conforms to the international length standard and the introduction of the concept of the 'Height systems' where all types of height (orthometric, dynamic, normal, gravity correction, and equipotential surface) have been investigated. The “Characteristic Straight Line Method" is slightly more convenient than the “Characteristic Circle Method". It permits to evaluate a displacement of very small magnitude even when the displacement is of an infinitesimal quantity. The inclination of the landslide is given by the inverse of the distance reference point O to the “Characteristic Straight Line". Its direction is given by the bearing of the normal directed from point O to the Characteristic Straight Line (Fig..6). A “best estimate" of the topometric observations was used to measure the elevation of points carefully selected, before and after the deformation. Gross errors have been eliminated by statistical analyses and by comparing the heights within local neighborhoods. The results of a test using an area where very interesting land surface deformation occurs are reported. Monitoring with different options and qualitative comparison of results based on a sufficient number of check points are presented.
Keywords: Characteristic straight line method, dynamic height, landslides, orthometric height, systematic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156714 Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains
Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe
Abstract:
The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.
Keywords: Digitalization, digital transformation, lean production, Industrie 4.0, value chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203313 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53712 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Mixed Integration Method: Stability Aspects and Computational Efficiency
Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino
Abstract:
In order to reduce numerical computations in the nonlinear dynamic analysis of seismically base-isolated structures, a Mixed Explicit-Implicit time integration Method (MEIM) has been proposed. Adopting the explicit conditionally stable central difference method to compute the nonlinear response of the base isolation system, and the implicit unconditionally stable Newmark’s constant average acceleration method to determine the superstructure linear response, the proposed MEIM, which is conditionally stable due to the use of the central difference method, allows to avoid the iterative procedure generally required by conventional monolithic solution approaches within each time step of the analysis. The main aim of this paper is to investigate the stability and computational efficiency of the MEIM when employed to perform the nonlinear time history analysis of base-isolated structures with sliding bearings. Indeed, in this case, the critical time step could become smaller than the one used to define accurately the earthquake excitation due to the very high initial stiffness values of such devices. The numerical results obtained from nonlinear dynamic analyses of a base-isolated structure with a friction pendulum bearing system, performed by using the proposed MEIM, are compared to those obtained adopting a conventional monolithic solution approach, i.e. the implicit unconditionally stable Newmark’s constant acceleration method employed in conjunction with the iterative pseudo-force procedure. According to the numerical results, in the presented numerical application, the MEIM does not have stability problems being the critical time step larger than the ground acceleration one despite of the high initial stiffness of the friction pendulum bearings. In addition, compared to the conventional monolithic solution approach, the proposed algorithm preserves its computational efficiency even when it is adopted to perform the nonlinear dynamic analysis using a smaller time step.Keywords: Base isolation, computational efficiency, mixed explicit-implicit method, partitioned solution approach, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105911 Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations
Authors: Jožef Ritonja, Bojan Grčar, Boštjan Polajžer
Abstract:
In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.
Keywords: Power system, stability, oscillations, power system stabilizer, model reference adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62910 Statistical Optimization of Adsorption of a Harmful Dye from Aqueous Solution
Abstract:
Textile industries cater to varied customer preferences and contribute substantially to the economy. However, these textile industries also produce a considerable amount of effluents. Prominent among these are the azo dyes which impart considerable color and toxicity even at low concentrations. Azo dyes are also used as coloring agents in food and pharmaceutical industry. Despite their applications, azo dyes are also notorious pollutants and carcinogens. Popular techniques like photo-degradation, biodegradation and the use of oxidizing agents are not applicable for all kinds of dyes, as most of them are stable to these techniques. Chemical coagulation produces a large amount of toxic sludge which is undesirable and is also ineffective towards a number of dyes. Most of the azo dyes are stable to UV-visible light irradiation and may even resist aerobic degradation. Adsorption has been the most preferred technique owing to its less cost, high capacity and process efficiency and the possibility of regenerating and recycling the adsorbent. Adsorption is also most preferred because it may produce high quality of the treated effluent and it is able to remove different kinds of dyes. However, the adsorption process is influenced by many variables whose inter-dependence makes it difficult to identify optimum conditions. The variables include stirring speed, temperature, initial concentration and adsorbent dosage. Further, the internal diffusional resistance inside the adsorbent particle leads to slow uptake of the solute within the adsorbent. Hence, it is necessary to identify optimum conditions that lead to high capacity and uptake rate of these pollutants. In this work, commercially available activated carbon was chosen as the adsorbent owing to its high surface area. A typical azo dye found in textile effluent waters, viz. the monoazo Acid Orange 10 dye (CAS: 1936-15-8) has been chosen as the representative pollutant. Adsorption studies were mainly focused at obtaining equilibrium and kinetic data for the batch adsorption process at different process conditions. Studies were conducted at different stirring speed, temperature, adsorbent dosage and initial dye concentration settings. The Full Factorial Design was the chosen statistical design framework for carrying out the experiments and identifying the important factors and their interactions. The optimum conditions identified from the experimental model were validated with actual experiments at the recommended settings. The equilibrium and kinetic data obtained were fitted to different models and the model parameters were estimated. This gives more details about the nature of adsorption taking place. Critical data required to design batch adsorption systems for removal of Acid Orange 10 dye and identification of factors that critically influence the separation efficiency are the key outcomes from this research.
Keywords: Acid Orange 10, Activated carbon, Optimum conditions, Statistical design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13539 A Grid Synchronization Method Based on Adaptive Notch Filter for SPV System with Modified MPPT
Authors: Priyanka Chaudhary, M. Rizwan
Abstract:
This paper presents a grid synchronization technique based on adaptive notch filter for SPV (Solar Photovoltaic) system along with MPPT (Maximum Power Point Tracking) techniques. An efficient grid synchronization technique offers proficient detection of various components of grid signal like phase and frequency. It also acts as a barrier for harmonics and other disturbances in grid signal. A reference phase signal synchronized with the grid voltage is provided by the grid synchronization technique to standardize the system with grid codes and power quality standards. Hence, grid synchronization unit plays important role for grid connected SPV systems. As the output of the PV array is fluctuating in nature with the meteorological parameters like irradiance, temperature, wind etc. In order to maintain a constant DC voltage at VSC (Voltage Source Converter) input, MPPT control is required to track the maximum power point from PV array. In this work, a variable step size P & O (Perturb and Observe) MPPT technique with DC/DC boost converter has been used at first stage of the system. This algorithm divides the dPpv/dVpv curve of PV panel into three separate zones i.e. zone 0, zone 1 and zone 2. A fine value of tracking step size is used in zone 0 while zone 1 and zone 2 requires a large value of step size in order to obtain a high tracking speed. Further, adaptive notch filter based control technique is proposed for VSC in PV generation system. Adaptive notch filter (ANF) approach is used to synchronize the interfaced PV system with grid to maintain the amplitude, phase and frequency parameters as well as power quality improvement. This technique offers the compensation of harmonics current and reactive power with both linear and nonlinear loads. To maintain constant DC link voltage a PI controller is also implemented and presented in this paper. The complete system has been designed, developed and simulated using SimPower System and Simulink toolbox of MATLAB. The performance analysis of three phase grid connected solar photovoltaic system has been carried out on the basis of various parameters like PV output power, PV voltage, PV current, DC link voltage, PCC (Point of Common Coupling) voltage, grid voltage, grid current, voltage source converter current, power supplied by the voltage source converter etc. The results obtained from the proposed system are found satisfactory.
Keywords: Solar photovoltaic systems, MPPT, voltage source converter, grid synchronization technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19688 Perceptual Framework for a Modern Left-Turn Collision Warning System
Authors: E. Dabbour, S. M. Easa
Abstract:
Most of the collision warning systems currently available in the automotive market are mainly designed to warn against imminent rear-end and lane-changing collisions. No collision warning system is commercially available to warn against imminent turning collisions at intersections, especially for left-turn collisions when a driver attempts to make a left-turn at either a signalized or non-signalized intersection, conflicting with the path of other approaching vehicles traveling on the opposite-direction traffic stream. One of the major factors that lead to left-turn collisions is the human error and misjudgment of the driver of the turning vehicle when perceiving the speed and acceleration of other vehicles traveling on the opposite-direction traffic stream; therefore, using a properly-designed collision warning system will likely reduce, or even eliminate, this type of collisions by reducing human error. This paper introduces perceptual framework for a proposed collision warning system that can detect imminent left-turn collisions at intersections. The system utilizes a commercially-available detection sensor (either a radar sensor or a laser detector) to detect approaching vehicles traveling on the opposite-direction traffic stream and calculate their speeds and acceleration rates to estimate the time-tocollision and compare that time to the time required for the turning vehicle to clear the intersection. When calculating the time required for the turning vehicle to clear the intersection, consideration is given to the perception-reaction time of the driver of the turning vehicle, which is the time required by the driver to perceive the message given by the warning system and react to it by engaging the throttle. A regression model was developed to estimate perception-reaction time based on age and gender of the driver of the host vehicle. Desired acceleration rate selected by the driver of the turning vehicle, when making the left-turn movement, is another human factor that is considered by the system. Another regression model was developed to estimate the acceleration rate selected by the driver of the turning vehicle based on driver-s age and gender as well as on the location and speed of the nearest approaching vehicle along with the maximum acceleration rate provided by the mechanical characteristics of the turning vehicle. By comparing time-to-collision with the time required for the turning vehicle to clear the intersection, the system displays a message to the driver of the turning vehicle when departure is safe. An application example is provided to illustrate the logic algorithm of the proposed system.Keywords: Collision warning systems, intelligent transportationsystems, vehicle safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20557 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University
Authors: Karishma Kashyap, Subha D. Parida
Abstract:
Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performanceKeywords: Building Optimization, Green Building, Post Occupancy Evaluation, Stakeholder Engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9886 Web-Based Instructional Program to Improve Professional Development: Recommendations and Standards for Radioactive Facilities in Brazil
Authors: Denise Levy, Gian M. A. A. Sordi
Abstract:
This web based project focuses on continuing corporate education and improving workers' skills in Brazilian radioactive facilities throughout the country. The potential of Information and Communication Technologies (ICTs) shall contribute to improve the global communication in this very large country, where it is a strong challenge to ensure high quality professional information to as many people as possible. The main objective of this system is to provide Brazilian radioactive facilities a complete web-based repository - in Portuguese - for research, consultation and information, offering conditions for learning and improving professional and personal skills. UNIPRORAD is a web based system to offer unified programs and inter-related information about radiological protection programs. The content includes the best practices for radioactive facilities in order to meet both national standards and international recommendations published by different organizations over the past decades: International Commission on Radiological Protection (ICRP), International Atomic Energy Agency (IAEA) and National Nuclear Energy Commission (CNEN). The website counts on concepts, definitions and theory about optimization and ionizing radiation monitoring procedures. Moreover, the content presents further discussions related to some national and international recommendations, such as potential exposure, which is currently one of the most important research fields in radiological protection. Only two publications of ICRP develop expressively the issue and there is still a lack of knowledge of fail probabilities, for there are still uncertainties to find effective paths to quantify probabilistically the occurrence of potential exposures and the probabilities to reach a certain level of dose. To respond to this challenge, this project discusses and introduces potential exposures in a more quantitative way than national and international recommendations. Articulating ICRP and AIEA valid recommendations and official reports, in addition to scientific papers published in major international congresses, the website discusses and suggests a number of effective actions towards safety which can be incorporated into labor practice. The WEB platform was created according to corporate public needs, taking into account the development of a robust but flexible system, which can be easily adapted to future demands. ICTs provide a vast array of new communication capabilities and allow to spread information to as many people as possible at low costs and high quality communication. This initiative shall provide opportunities for employees to increase professional skills, stimulating development in this large country where it is an enormous challenge to ensure effective and updated information to geographically distant facilities, minimizing costs and optimizing results.
Keywords: Distance learning, information and communication technology, nuclear science, radioactive facilities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12725 A Hybrid Artificial Intelligence and Two Dimensional Depth Averaged Numerical Model for Solving Shallow Water and Exner Equations Simultaneously
Authors: S. Mehrab Amiri, Nasser Talebbeydokhti
Abstract:
Modeling sediment transport processes by means of numerical approach often poses severe challenges. In this way, a number of techniques have been suggested to solve flow and sediment equations in decoupled, semi-coupled or fully coupled forms. Furthermore, in order to capture flow discontinuities, a number of techniques, like artificial viscosity and shock fitting, have been proposed for solving these equations which are mostly required careful calibration processes. In this research, a numerical scheme for solving shallow water and Exner equations in fully coupled form is presented. First-Order Centered scheme is applied for producing required numerical fluxes and the reconstruction process is carried out toward using Monotonic Upstream Scheme for Conservation Laws to achieve a high order scheme. In order to satisfy C-property of the scheme in presence of bed topography, Surface Gradient Method is proposed. Combining the presented scheme with fourth order Runge-Kutta algorithm for time integration yields a competent numerical scheme. In addition, to handle non-prismatic channels problems, Cartesian Cut Cell Method is employed. A trained Multi-Layer Perceptron Artificial Neural Network which is of Feed Forward Back Propagation (FFBP) type estimates sediment flow discharge in the model rather than usual empirical formulas. Hydrodynamic part of the model is tested for showing its capability in simulation of flow discontinuities, transcritical flows, wetting/drying conditions and non-prismatic channel flows. In this end, dam-break flow onto a locally non-prismatic converging-diverging channel with initially dry bed conditions is modeled. The morphodynamic part of the model is verified simulating dam break on a dry movable bed and bed level variations in an alluvial junction. The results show that the model is capable in capturing the flow discontinuities, solving wetting/drying problems even in non-prismatic channels and presenting proper results for movable bed situations. It can also be deducted that applying Artificial Neural Network, instead of common empirical formulas for estimating sediment flow discharge, leads to more accurate results.
Keywords: Artificial neural network, morphodynamic model, sediment continuity equation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8834 Case Study Analysis of 2017 European Railway Traffic Management Incident: The Application of System for Investigation of Railway Interfaces Methodology
Authors: Sanjeev Kumar Appicharla
Abstract:
This paper presents the results of the modelling and analysis of the European Railway Traffic Management (ERTMS) safety critical incident to raise awareness of biases in systems engineering process on the Cambrian Railway in the UK using the RAIB 17/2019 as a primary input. The RAIB, the UK independent accident investigator, published the Report- RAIB 17/2019 giving the details of their investigation of the focal event in the form of immediate cause, causal factors and underlying factors and recommendations to prevent a repeat of the safety-critical incident on the Cambrian Line. The Systems for Investigation of Railway Interfaces (SIRI) is the Methodology used to model and analyse the safety-critical incident. The SIRI Methodology uses the Swiss Cheese Model to model the incident and identify latent failure conditions (potentially less than adequate conditions) by means of the Management Oversight and Risk Tree technique. The benefits of the SIRI Methodology are threefold: first is that it incorporates “Heuristics and Biases” approach, in the Management Oversight and Risk Tree technique to identify systematic errors. Civil engineering and programme management railway professionals are aware of role “optimism bias” plays in programme cost overruns and are aware of bow tie (fault and event tree) model-based safety risk modelling technique. However, the role of systematic errors due to “Heuristics and Biases” is not appreciated as yet. This overcomes the problems of omission of human and organisational factors from accident analysis. Second, the scope of the investigation includes all levels of the socio-technical system, including government, regulatory, railway safety bodies, duty holders, signalling firms and transport planners, and front-line staff such that lessons learned at the decision making and implementation level as well. Third, the author’s past accident case studies are supplemented with research pieces of evidence drawn from the practitioner’s and academic researchers’ publications as well. This is to discuss the role of system thinking to improve the decision making and risk management processes and practices in the IEC 15288 Systems Engineering standard, and in the industrial context such as the GB railways and Artificial Intelligence (AI) contexts as well.
Keywords: Accident analysis, AI algorithm internal audit, bounded rationality, Byzantine failures, heuristics and biases approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3813 Analytical, Numerical, and Experimental Research Approaches to Influence of Vibrations on Hydroelastic Processes in Centrifugal Pumps
Authors: Dinara F. Gaynutdinova, Vladimir Ya Modorsky, Nikolay A. Shevelev
Abstract:
The problem under research is that of unpredictable modes occurring in two-stage centrifugal hydraulic pump as a result of hydraulic processes caused by vibrations of structural components. Numerical, analytical and experimental approaches are considered. A hypothesis was developed that the problem of unpredictable pressure decrease at the second stage of centrifugal pumps is caused by cavitation effects occurring upon vibration. The problem has been studied experimentally and theoretically as of today. The theoretical study was conducted numerically and analytically. Hydroelastic processes in dynamic “liquid – deformed structure” system were numerically modelled and analysed. Using ANSYS CFX program engineering analysis complex and computing capacity of a supercomputer the cavitation parameters were established to depend on vibration parameters. An influence domain of amplitudes and vibration frequencies on concentration of cavitation bubbles was formulated. The obtained numerical solution was verified using CFM program package developed in PNRPU. The package is based on a differential equation system in hyperbolic and elliptic partial derivatives. The system is solved by using one of finite-difference method options – the particle-in-cell method. The method defines the problem solution algorithm. The obtained numerical solution was verified analytically by model problem calculations with the use of known analytical solutions of in-pipe piston movement and cantilever rod end face impact. An infrastructure consisting of an experimental fast hydro-dynamic processes research installation and a supercomputer connected by a high-speed network, was created to verify the obtained numerical solutions. Physical experiments included measurement, record, processing and analysis of data for fast processes research by using National Instrument signals measurement system and Lab View software. The model chamber end face oscillated during physical experiments and, thus, loaded the hydraulic volume. The loading frequency varied from 0 to 5 kHz. The length of the operating chamber varied from 0.4 to 1.0 m. Additional loads weighed from 2 to 10 kg. The liquid column varied from 0.4 to 1 m high. Liquid pressure history was registered. The experiment showed dependence of forced system oscillation amplitude on loading frequency at various values: operating chamber geometrical dimensions, liquid column height and structure weight. Maximum pressure oscillation (in the basic variant) amplitudes were discovered at loading frequencies of approximately 1,5 kHz. These results match the analytical and numerical solutions in ANSYS and CFM.
Keywords: Computing experiment, hydroelasticity, physical experiment, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15592 Modern Detection and Description Methods for Natural Plants Recognition
Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert
Abstract:
Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.
Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7291 Generative Syntaxes: Macro-Heterophony and the Form of ‘Synchrony’
Authors: Luminiţa Duţică, Gheorghe Duţică
Abstract:
One of the most powerful language innovation in the twentieth century music was the heterophony–hypostasis of the vertical syntax entered into the sphere of interest of many composers, such as George Enescu, Pierre Boulez, Mauricio Kagel, György Ligeti and others. The heterophonic syntax has a history of its growth, which means a succession of different concepts and writing techniques. The trajectory of settling this phenomenon does not necessarily take into account the chronology: there are highly complex primary stages and advanced stages of returning to the simple forms of writing. In folklore, the plurimelodic simultaneities are free or random and originate from the (unintentional) differences/‘deviations’ from the state of unison, through a variety of ornaments, melismas, imitations, elongations and abbreviations, all in a flexible rhythmic and non-periodic/immeasurable framework, proper to the parlando-rubato rhythmics. Within the general framework of the multivocal organization, the heterophonic syntax in elaborate (academic) version has imposed itself relatively late compared with polyphony and homophony. Of course, the explanation is simple, if we consider the causal relationship between the sound vocabulary elements – in this case, the modalism – and the typologies of vertical organization appropriate for it. Therefore, adding up the ‘classic’ pathway of the writing typologies (monody – polyphony – homophony), heterophony - applied equally to the structures of modal, serial or synthesis vocabulary – reclaims necessarily an own macrotemporal form, in the sense of the analogies enshrined by the evolution of the musical styles and languages: polyphony→fugue, homophony→sonata. Concerned about the prospect of edifying a new musical ontology, the composer Ştefan Niculescu experienced – along with the mathematical organization of heterophony according to his own original methods – the possibility of extrapolation of this phenomenon in macrostructural plan, reaching this way to the unique form of ‘synchrony’. Founded on coincidentia oppositorum principle (involving the ‘one-multiple’ binom), the sound architecture imagined by Ştefan Niculescu consists in one (temporal) model / algorithm of articulation of two sound states: 1. monovocality state (principle of identity) and 2. multivocality state (principle of difference). In this context, the heterophony becomes an (auto)generative mechanism, with macrotemporal amplitude, strategy that will be grown by the composer, practically throughout his creation (see the works: Ison I, Ison II, Unisonos I, Unisonos II, Duplum, Triplum, Psalmus, Héterophonies pour Montreux (Homages to Enescu and Bartók etc.). For the present demonstration, we selected one of the most edifying works of Ştefan Niculescu – Simphony II, Opus dacicum – where the form of (heterophony-)synchrony acquires monumental-symphonic features, representing an emblematic case for the complexity level achieved by this type of vertical syntax in the twentieth century music.
Keywords: Heterophony, modalism, serialism, synchrony, syntax.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730