Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32718
Digital Transformation of Lean Production: Systematic Approach for the Determination of Digitally Pervasive Value Chains

Authors: Peter Burggräf, Matthias Dannapfel, Hanno Voet, Patrick-Benjamin Bök, Jérôme Uelpenich, Julian Hoppe


The increasing digitalization of value chains can help companies to handle rising complexity in their processes and thereby reduce the steadily increasing planning and control effort in order to raise performance limits. Due to technological advances, companies face the challenge of smart value chains for the purpose of improvements in productivity, handling the increasing time and cost pressure and the need of individualized production. Therefore, companies need to ensure quick and flexible decisions to create self-optimizing processes and, consequently, to make their production more efficient. Lean production, as the most commonly used paradigm for complexity reduction, reaches its limits when it comes to variant flexible production and constantly changing market and environmental conditions. To lift performance limits, which are inbuilt in current value chains, new methods and tools must be applied. Digitalization provides the potential to derive these new methods and tools. However, companies lack the experience to harmonize different digital technologies. There is no practicable framework, which instructs the transformation of current value chains into digital pervasive value chains. Current research shows that a connection between lean production and digitalization exists. This link is based on factors such as people, technology and organization. In this paper, the introduced method for the determination of digitally pervasive value chains takes the factors people, technology and organization into account and extends existing approaches by a new dimension. It is the first systematic approach for the digital transformation of lean production and consists of four steps: The first step of ‘target definition’ describes the target situation and defines the depth of the analysis with regards to the inspection area and the level of detail. The second step of ‘analysis of the value chain’ verifies the lean-ability of processes and lies in a special focus on the integration capacity of digital technologies in order to raise the limits of lean production. Furthermore, the ‘digital evaluation process’ ensures the usefulness of digital adaptions regarding their practicability and their integrability into the existing production system. Finally, the method defines actions to be performed based on the evaluation process and in accordance with the target situation. As a result, the validation and optimization of the proposed method in a German company from the electronics industry shows that the digital transformation of current value chains based on lean production achieves a raise of their inbuilt performance limits.

Keywords: Digitalization, digital transformation, lean production, Industrie 4.0, value chain.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945


[1] T. Bauernhansl, “Die Vierte Industrielle Revolution – Der Weg in ein wertschaffendes Produktionsparadigma”, in Handbuch Industrie 4.0, Bd. 4, B. Vogel-Heuser, T. Bauernhansl, and M. Hompel, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 1-32.
[2] G. Schuh, C. Reuter, and A. Hauptvogel, „Hypotheses for a Theory of Production in the Context of Industrie 4.0”, in Advances in Production Technology, C. Brecher, Ed. Cham: Springer Open, 2015, pp. 11-23.
[3] A. Bildstein, and J. Seidelmann, “Migration zur Industrie 4.0-Fertigung”, in Handbuch Industrie 4.0, Bd. 1, B. Vogel-Heuser, T. Bauernhansl, and M. Hompel, Ed. Berlin: Springer Vieweg, 2017, pp. 227-242.
[4] A. Sanders, C. Elangeswaran, and J. Wulfsberg, „Industry 4.0 Implies Lean Manufacturing: Research Activities in Industrie 4.0 Function as Enablers for Lean Manufacturing”, in Journal of Industrial Engineering and Management, 3nd ed. vol. 9, 2016, pp. 811-833.
[5] J. Posada et al., “Visual Computing as Key Enabling Technology for Industrie 4.0 & Industrial Internet”, in IEE computer graphics and applications, 2nd ed. vol. 35, 2015, pp. 26-40.
[6] J. P. Womack, D. T. Jones, and D. Ross, “The machine that changed the world”, New York: Rawson, 1990.
[7] J. K. Liker, “The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer”, New York: McGraw-Hill, 2004.
[8] D. Kolberg, and D. Zühlke, “Lean Automation enabled by Industry 4.0 Technologies”, in 15th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2015), A. Dolugi et al., Red Hook: Curran Associates, 2016, pp. 1870-1875.
[9] P. Hines, M. Holweg, and N. Rich, „Learning to evolve“, in Internal Journal of Operations & Production Management, 24nd ed. vol. 10, 2004, pp. 994-1011.
[10] A. Roth, “Industrie 4.0 – Hype oder Revolution?”, in Einführung und Umsetzung von Industrie 4.0, A. Roth, Ed. Heidelberg: Springer Gabler, 2016, pp. 1-15.
[11] D. Roy, P. Mittag, and M. Baumeister, “Industrie 4.0 – Einfluss der Digitalisierung auf die fünf Lean-Prinzipien”, in productivity, 2nd ed. vol. 20, 2015, pp. 27-30.
[12] M. E. Porter, and J. E. Heppelmann, “How Smart, Connected Products Are Transforming Companies”, in Harvard Business Review, 10nd ed. vol. 93, 2015, pp. 96-114.
[13] J. Deuse, K. Weisner, A. Hengstebeck, and F. Busch, “Gestaltung von Produktionssystemen im Kontext von Industrie 4.0”, in Zukunft der Arbeit in Industrie 4.0, A. Botthof, and E. A. Hartmann, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 99-110.
[14] E. Ulich, “Arbeitspsychologie”, Ed. Zürich: vdf Hochschulverlag an der ETH, 2011.
[15] C. Block et al., “Industrie 4.0 als soziotechnisches Spannungsfeld”, in ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 10nd ed. vol. 110, 2015, pp. 657-660.
[16] A. Brandis, “Systematik zur zukunftsorientierten Konzipierung wandlungsfähiger Prozesssysteme”, Aachen: Shaker, 2014.
[17] E. Ulich, “Mensch-Technik-Organisation: ein europäisches Produktionskonzept”, in Unternehmen arbeitspsychologisch bewerten, O. Strohm, and O. P. Escher, Ed. Zürich: vdf Hochschulverlag an der ETH, 1997.
[18] D. Dirzus, W. Bauer, S. Braunreuther, and C. Berger, “Statusreport Arbeitswelt Industrie 4.0”, VDI Verein Deutscher Ingenieure, 2016.
[19] T. Kaufmann, “Geschäftsmodelle in Industrie 4.0 und dem Internet der Dinge”, Wiesbaden: Springer Vieweg, 2015.
[20] G. T. Doran, „There’s a S.M.A.R.T. way to write management’s goals and objectives”, in Management Review, 11nd ed. vol. 70, 1981, pp. 35-36.
[21] G. Lanza, P. Nyhuis, S. M. Ansari, T. Kuprat, and C. Liebrecht, “Befähigungs- und Einführungsstrategien für Industrie 4.0”, in ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 1 ed., 2016, pp. 76-79.
[22] J. Santos, R. A. Wysk, and J. M. Torres, “Improving Production with Lean Thinking”, Hoboken: Wiley, 2014.
[23] Plattform Industrie 4.0, “Aspekte der Forschungsroadmap in den Anwendungsszenarien”, Bundesministerium für Wirtschaft und Energie, Berlin, 2016.
[24] W. Dorst, “Anwendungsszenarien für Industrie 4.0”, BITKOM, 2017.
[25] H. Kagermann et al., “Umsetzungsempfehlung für das Zukunftsprojekt Industrie 4.0”, acatec, 2013.
[26] A. Botthof, E. A. Hartmann, “Zukunft der Arbeit in Industrie 4.0”, Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 4-8.
[27] E. A. Hartmann, “Internet der Dinge: Technologien im Anwendungsfeld Produktions- und Fertigungsplanung”, Hans-Böckler-Stiftung, Düsseldorf, 2009.
[28] K. Fischer, “Industrie 4.0 – Kernpunkte und Themenfelder”, Hannover, 2016.
[29] N. Vojdani, and M. Knop, “Leistungsorientierte Bewertung und Auswahl von Materialbereitstellungsstrategien mittels Fuzzy Axiomatic Design”, in Logistics Journal, 5nd ed., 2016.
[30] M. Celik, C. Kahraman, S. Cebi, and I. D. Er, “Fuzzy axiomatic design-based performance evaluation model for docking facilities in shipbuilding industry: The case of Turkish shipyards”, in Expert Systems with Applications, vol. 36, 2009, pp. 599-615.
[31] C. Kahraman, I. Kaya, and S. Cebi, “A comparative analysis for multiattribute selection among renewable energy alternatives using fuzzy axiomatic design and fuzzy analytic hierarchy process”, in Energy, 10nd ed. vol. 34, 2009, pp. 1603-1616.
[32] Ernst&Young, “Industrie 4.0 – das unbekannte Wesen?”, 2016.
[33] M. Rother, J. Shook, “Learning to See: Value Stream Mapping to Create Value and Eliminate Muda”, Lean Enterprise Institute, 1999.
[34] T. Meudt, M. P. Rößler, J. Böllhoff, J. Metternich, “Wertstromanalyse 4.0”, in ZWF Zeitschrift für wirtschaftlichen Fachbetrieb, vol. 111, No. 6, 2016, pp. 319-322.