Search results for: neuro-fuzzy prediction.
575 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death
Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar
Abstract:
In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.Keywords: Early stage prediction, heart rate variability, linear and non linear analysis, sudden cardiac death.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805574 A Comprehensive Analysis for Widespread use of Electric Vehicles
Authors: Yu Zhou, Zhaoyang Dong, Xiaomei Zhao
Abstract:
This paper mainly investigates the environmental and economic impacts of worldwide use of electric vehicles. It can be concluded that governments have good reason to promote the use of electric vehicles. First, the global vehicles population is evaluated with the help of grey forecasting model and the amount of oil saving is estimated through approximate calculation. After that, based on the game theory, the amount and types of electricity generation needed by electronic vehicles are established. Finally, some conclusions on the government-s attitudes are drawn.Keywords: electronic vehicles, grey prediction, game theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656573 Futures Trading: Design of a Strategy
Authors: Jan Zeman
Abstract:
The paper describes the futures trading and aims to design the speculators trading strategy. The problem is formulated as the decision making task and such as is solved. The solution of the task leads to complex mathematical problems and the approximations of the decision making is demanded. Two kind of approximation are used in the paper: Monte Carlo for the multi-step prediction and iteration spread in time for the optimization. The solution is applied to the real-market data and the results of the off-line experiments are presented.Keywords: futures trading, decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124572 Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Based on Residual Analysis
Authors: Satyendra Nath Mandal, J. Pal Choudhury, Dilip De, S. R. Bhadra Chaudhuri
Abstract:
The selection for plantation of a particular type of mustard plant depending on its productivity (pod yield) at the stage of maturity. The growth of mustard plant dependent on some parameters of that plant, these are shoot length, number of leaves, number of roots and roots length etc. As the plant is growing, some leaves may be fall down and some new leaves may come, so it can not gives the idea to develop the relationship with the seeds weight at mature stage of that plant. It is not possible to find the number of roots and root length of mustard plant at growing stage that will be harmful of this plant as roots goes deeper to deeper inside the land. Only the value of shoot length which increases in course of time can be measured at different time instances. Weather parameters are maximum and minimum humidity, rain fall, maximum and minimum temperature may effect the growth of the plant. The parameters of pollution, water, soil, distance and crop management may be dominant factors of growth of plant and its productivity. Considering all parameters, the growth of the plant is very uncertain, fuzzy environment can be considered for the prediction of shoot length at maturity of the plant. Fuzzification plays a greater role for fuzzification of data, which is based on certain membership functions. Here an effort has been made to fuzzify the original data based on gaussian function, triangular function, s-function, Trapezoidal and L –function. After that all fuzzified data are defuzzified to get normal form. Finally the error analysis (calculation of forecasting error and average error) indicates the membership function appropriate for fuzzification of data and use to predict the shoot length at maturity. The result is also verified using residual (Absolute Residual, Maximum of Absolute Residual, Mean Absolute Residual, Mean of Mean Absolute Residual, Median of Absolute Residual and Standard Deviation) analysis.Keywords: Fuzzification, defuzzification, gaussian function, triangular function, trapezoidal function, s-function, , membership function, residual analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2319571 Assessment of Path Loss Prediction Models for Wireless Propagation Channels at L-Band Frequency over Different Micro-Cellular Environments of Ekiti State, Southwestern Nigeria
Authors: C. I. Abiodun, S. O. Azi, J. S. Ojo, P. Akinyemi
Abstract:
The design of accurate and reliable mobile communication systems depends majorly on the suitability of path loss prediction methods and the adaptability of the methods to various environments of interest. In this research, the results of the adaptability of radio channel behavior are presented based on practical measurements carried out in the 1800 MHz frequency band. The measurements are carried out in typical urban, suburban and rural environments in Ekiti State, Southwestern part of Nigeria. A total number of seven base stations of MTN GSM service located in the studied environments were monitored. Path loss and break point distances were deduced from the measured received signal strength (RSS) and a practical path loss model is proposed based on the deduced break point distances. The proposed two slope model, regression line and four existing path loss models were compared with the measured path loss values. The standard deviations of each model with respect to the measured path loss were estimated for each base station. The proposed model and regression line exhibited lowest standard deviations followed by the Cost231-Hata model when compared with the Erceg Ericsson and SUI models. Generally, the proposed two-slope model shows closest agreement with the measured values with a mean error values of 2 to 6 dB. These results show that, either the proposed two slope model or Cost 231-Hata model may be used to predict path loss values in mobile micro cell coverage in the well-considered environments. Information from this work will be useful for link design of microwave band wireless access systems in the region.
Keywords: Break-point distances, path loss models, path loss exponent, received signal strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819570 Genetic Algorithms in Hot Steel Rolling for Scale Defect Prediction
Authors: Jarno Haapamäki, Juha Röning
Abstract:
Scale defects are common surface defects in hot steel rolling. The modelling of such defects is problematic and their causes are not straightforward. In this study, we investigated genetic algorithms in search for a mathematical solution to scale formation. For this research, a high-dimensional data set from hot steel rolling process was gathered. The synchronisation of the variables as well as the allocation of the measurements made on the steel strip were solved before the modelling phase.
Keywords: Genetic algorithms, hot strip rolling, knowledge discovery, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3306569 Investigation of Artificial Neural Networks Performance to Predict Net Heating Value of Crude Oil by Its Properties
Authors: Mousavian, M. Moghimi Mofrad, M. H. Vakili, D. Ashouri, R. Alizadeh
Abstract:
The aim of this research is to use artificial neural networks computing technology for estimating the net heating value (NHV) of crude oil by its Properties. The approach is based on training the neural network simulator uses back-propagation as the learning algorithm for a predefined range of analytically generated well test response. The network with 8 neurons in one hidden layer was selected and prediction of this network has been good agreement with experimental data.
Keywords: Neural Network, Net Heating Value, Crude Oil, Experimental, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588568 Measuring Enterprise Growth: Pitfalls and Implications
Authors: N. Šarlija, S. Pfeifer, M. Jeger, A. Bilandžić
Abstract:
Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.Keywords: Growth measurement constructs, logistic regression, prediction of growth potential, small and medium-sized enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476567 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828566 Deoiling Hydrocyclones Flow Field-A Comparison between k-Epsilon and LES
Authors: Maysam Saidi, Reza Maddahian, Bijan Farhanieh
Abstract:
In this research a comparison between k-epsilon and LES model for a deoiling hydrocyclone is conducted. Flow field of hydrocyclone is obtained by three-dimensional simulations with OpenFOAM code. Potential of prediction for both methods of this complex swirl flow is discussed. Large eddy simulation method results have more similarity to experiment and its results are presented in figures from different hydrocyclone cross sections.Keywords: Deoiling hydrocyclones, k-epsilon model, Largeeddy simulation, OpenFOAM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525565 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In the paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.
Keywords: Predictive control, Synchronization, Satellite attitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950564 A Study of Neuro-Fuzzy Inference System for Gross Domestic Product Growth Forecasting
Authors: Ε. Giovanis
Abstract:
In this paper we present a Adaptive Neuro-Fuzzy System (ANFIS) with inputs the lagged dependent variable for the prediction of Gross domestic Product growth rate in six countries. We compare the results with those of Autoregressive (AR) model. We conclude that the forecasting performance of neuro-fuzzy-system in the out-of-sample period is much more superior and can be a very useful alternative tool used by the national statistical services and the banking and finance industry.Keywords: Autoregressive model, Forecasting, Gross DomesticProduct, Neuro-Fuzzy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603563 Predicting Automotive Interior Noise Including Wind Noise by Statistical Energy Analysis
Authors: Yoshio Kurosawa
Abstract:
The applications of soundproof materials for reduction of high frequency automobile interior noise have been researched. This paper presents a sound pressure prediction technique including wind noise by Hybrid Statistical Energy Analysis (HSEA) in order to reduce weight of acoustic insulations. HSEA uses both analytical SEA and experimental SEA. As a result of chassis dynamo test and road test, the validity of SEA modeling was shown, and utility of the method was confirmed.
Keywords: Vibration, noise, car, statistical energy analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577562 Analysis of S.P.O Techniques for Prediction of Dynamic Behavior of the Plate
Authors: Byung-kyoo Jung, Weui-bong Jeong
Abstract:
In most cases, it is considerably difficult to directly measure structural vibration with a lot of sensors because of complex geometry, time and equipment cost. For this reason, this paper deals with the problem of locating sensors on a plate model by four advanced sensor placement optimization (S.P.O) techniques. It also suggests the evaluation index representing the characteristic of orthogonal between each of natural modes. The index value provides the assistance to selecting of proper S.P.O technique and optimal positions for monitoring of dynamic systems without the experiment.Keywords: Genetic algorithm, Modal assurance criterion, Sensor placement optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679561 Application of Reliability Prediction Model Adapted for the Analysis of the ERP System
Authors: F. Urem, K. Fertalj, Ž. Mikulić
Abstract:
This paper presents the possibilities of using Weibull statistical distribution in modeling the distribution of defects in ERP systems. There follows a case study, which examines helpdesk records of defects that were reported as the result of one ERP subsystem upgrade. The result of the applied modeling is in modeling the reliability of the ERP system from a user perspective with estimated parameters like expected maximum number of defects in one day or predicted minimum of defects between two upgrades. Applied measurement-based analysis framework is proved to be suitable in predicting future states of the reliability of the observed ERP subsystems.
Keywords: ERP, reliability, Weibull
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314560 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm
Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad
Abstract:
Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study show that modified equation has good agreement with experimental data.
Keywords: Equation of state, modification, ammonia, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2773559 Hidden Markov Model for the Simulation Study of Neural States and Intentionality
Authors: R. B. Mishra
Abstract:
Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.Keywords: BDI, HMM, neural activation, optimal states, working conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870558 A Study on the Relation of Corporate Governance and Pricing for Initial Public Offerings
Authors: Chei-Chang Chiou, Sen-Wei Wang, Yu-Min Wang
Abstract:
The purpose of this study is to investigate the relationship between corporate governance and pricing for initial public offerings (IPOs). Empirical result finds that the prediction of pricing of IPOs with corporate governance added can have a rather higher degree of predicting accuracy than that of non governance added during the training and testing samples. Therefore, it can be observed that corporate governance mechanism can affect the pricing of IPOsKeywords: Artificial neural networks, corporate governance, initial public offerings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806557 An Accurate Prediction of Surface Temperature History in a Supersonic Flight
Authors: A. M. Tahsini, S. A. Hosseini
Abstract:
In the present study, the surface temperature history of the adaptor part in a two-stage supersonic launch vehicle is accurately predicted. The full Navier-Stokes equations are used to estimate the aerodynamic heat flux and the one-dimensional heat conduction in solid phase is used to compute the temperature history. The instantaneous surface temperature is used to improve the applied heat flux, to improve the accuracy of the results.
Keywords: Aerodynamic heating, Heat conduction, Numerical simulation, Supersonic flight, Launch vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709556 A Thermal-Shock Fatigue Design of Automotive Heat Exchangers
Authors: A. Chidley, F. Roger, A. Traidia
Abstract:
A method is presented for using thermo-mechanical fatigue analysis as a tool in the design of automotive heat exchangers. Use of infra-red thermography to measure the real thermal history in the heat exchanger reduces the time necessary for calculating design parameters and improves prediction accuracy. Thermal shocks are the primary cause of heat exchanger damage. Thermo-mechanical simulation is based on the mean behavior of the aluminum tubes used in the heat exchanger. An energetic fatigue criterion is used to detect critical zones.
Keywords: Heat exchanger, Fatigue, Thermal shocks. I.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566555 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand
Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan
Abstract:
This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3229554 Analysis of DNA from Fired Cartridge Casings
Authors: S. Mawlood, L. Dennany, N. Watson, B. Pickard
Abstract:
DNA analysis has been widely accepted as providing valuable evidence concerning the identity of the source of biological traces. Our work has showed that DNA samples can survive on cartridges even after firing. The study also raised the possibility of determining other information such as the age of the donor. Such information may be invaluable in certain cases where spent cartridges from automatic weapons are left behind at the scene of a crime. In spite of the nature of touch evidence and exposure to high chamber temperatures during shooting, we were still capable to retrieve enough DNA for profile typing. In order to estimate age of contributor, DNA methylation levels were analyzed using EpiTect system for retrieved DNA. However, results were not conclusive, due to low amount of input DNA.Keywords: Age prediction, Fired cartridge, Trace DNA sample.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3910553 The Adsorption of SDS on Ferro-Precipitates
Authors: R.Marsalek
Abstract:
This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.Keywords: ferro-precipitate, adsorption, SDS, zeta potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909552 A Black-Box Approach in Modeling Valve Stiction
Abstract:
Several valve stiction models have been proposed in the literature to help understand and study the behavior of sticky valves. In this paper, an alternative black-box modeling approach based on Neural Network (NN) is presented. It is shown that with proper network type and optimum model structures, the performance of the developed NN stiction model is comparable to other established method. The resulting NN model is also tested for its robustness against the uncertainty in the stiction parameter values. Predictive mode operation also shows excellent performance of the proposed model for multi-steps ahead prediction.
Keywords: Control valve stiction, neural network, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604551 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province
Authors: Tanida Julvanichpong
Abstract:
Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).
Keywords: Predictive factors, exercise behaviors, junior high school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178550 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.
Keywords: SIPINA method, seism, focal depth, peak ground acceleration, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209549 Union Membership with Import Liberalization
Authors: Stephen B. Blumenfeld, Aaron Crawford, Andres G. Victorio
Abstract:
New Zealand-s product markets experienced a surge in import competition beginning from the late 1970-s when its government began to promote a policy of more open markets. This study considers how the trade liberalization aspect of the policy may have influenced unionization and union-organizing success. For describing the trade liberalization, a model shows how the removal of import tariffs can lead to countervailing influences upon the union membership of a domestic firm. The evidence supports the prediction that union membership has been decreased rather than increased. In the context of debates concerning globalization, it can be said that the power of unions has been diminished.Keywords: Imports, tariffs, unions, wages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1464548 Modeling of Crude Oil Blending via Discrete-Time Neural Networks
Abstract:
Crude oil blending is an important unit operation in petroleum refining industry. A good model for the blending system is beneficial for supervision operation, prediction of the export petroleum quality and realizing model-based optimal control. Since the blending cannot follow the ideal mixing rule in practice, we propose a static neural network to approximate the blending properties. By the dead-zone approach, we propose a new robust learning algorithm and give theoretical analysis. Real data of crude oil blending is applied to illustrate the neuro modeling approach.Keywords: Neural networks, modeling, stability, crude oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263547 A Numerical Model for Studying Convectional Lifting Processes in the Tropics
Authors: Chantawan Noisri, Robert Harold Buchanan Exell
Abstract:
A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.Keywords: Numerical weather prediction, Finite differences, Convection lifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292546 Prediction of Computer and Video Game Playing Population: An Age Structured Model
Authors: T. K. Sriram, Joydip Dhar
Abstract:
Models based on stage structure have found varied applications in population models. This paper proposes a stage structured model to study the trends in the computer and video game playing population of US. The game paying population is divided into three compartments based on their age group. After simulating the mathematical model, a forecast of the number of game players in each stage as well as an approximation of the average age of game players in future has been made.
Keywords: Age structure, Forecasting, Mathematical modeling, Stage structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901