Search results for: Lagrange basis function
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3095

Search results for: Lagrange basis function

2645 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS

Authors: Banaja Mohanty, Prakash Kumar Hota

Abstract:

This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.

Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2175
2644 A Bayesian Kernel for the Prediction of Protein- Protein Interactions

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.

Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
2643 Application of GA Optimization in Analysis of Variable Stiffness Composites

Authors: Nasim Fallahi, Erasmo Carrera, Alfonso Pagani

Abstract:

Variable angle tow describes the fibres which are curvilinearly steered in a composite lamina. Significantly, stiffness tailoring freedom of VAT composite laminate can be enlarged and enabled. Composite structures with curvilinear fibres have been shown to improve the buckling load carrying capability in contrast with the straight laminate composites. However, the optimal design and analysis of VAT are faced with high computational efforts due to the increasing number of variables. In this article, an efficient optimum solution has been used in combination with 1D Carrera’s Unified Formulation (CUF) to investigate the optimum fibre orientation angles for buckling analysis. The particular emphasis is on the LE-based CUF models, which provide a Lagrange Expansions to address a layerwise description of the problem unknowns. The first critical buckling load has been considered under simply supported boundary conditions. Special attention is lead to the sensitivity of buckling load corresponding to the fibre orientation angle in comparison with the results which obtain through the Genetic Algorithm (GA) optimization frame and then Artificial Neural Network (ANN) is applied to investigate the accuracy of the optimized model. As a result, numerical CUF approach with an optimal solution demonstrates the robustness and computational efficiency of proposed optimum methodology.

Keywords: Beam structures, layerwise, optimization, variable angle tow, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
2642 Enhancement of Capacity in a MC-CDMA based Cognitive Radio Network Using Non-Cooperative Game Model

Authors: Kalyani J. Kulkarni, Bharat S. Chaudhari

Abstract:

This paper addresses the issue of resource allocation in the emerging cognitive technology. Focusing the Quality of Service (QoS) of Primary Users (PU), a novel method is proposed for the resource allocation of Secondary Users (SU). In this paper, we propose the unique Utility Function in the game theoretic model of Cognitive Radio which can be maximized to increase the capacity of the Cognitive Radio Network (CRN) and to minimize the interference scenario. Utility function is formulated to cater the need of PUs by observing Signal to Noise ratio. Existence of Nash Equilibrium for the postulated game is established.

Keywords: Cognitive Networks, Game Theory, Nash Equilibrium, Resource Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
2641 A Spatial Repetitive Controller Applied to an Aeroelastic Model for Wind Turbines

Authors: Riccardo Fratini, Riccardo Santini, Jacopo Serafini, Massimo Gennaretti, Stefano Panzieri

Abstract:

This paper presents a nonlinear differential model, for a three-bladed horizontal axis wind turbine (HAWT) suited for control applications. It is based on a 8-dofs, lumped parameters structural dynamics coupled with a quasi-steady sectional aerodynamics. In particular, using the Euler-Lagrange Equation (Energetic Variation approach), the authors derive, and successively validate, such model. For the derivation of the aerodynamic model, the Greenbergs theory, an extension of the theory proposed by Theodorsen to the case of thin airfoils undergoing pulsating flows, is used. Specifically, in this work, the authors restricted that theory under the hypothesis of low perturbation reduced frequency k, which causes the lift deficiency function C(k) to be real and equal to 1. Furthermore, the expressions of the aerodynamic loads are obtained using the quasi-steady strip theory (Hodges and Ormiston), as a function of the chordwise and normal components of relative velocity between flow and airfoil Ut, Up, their derivatives, and section angular velocity ε˙. For the validation of the proposed model, the authors carried out open and closed-loop simulations of a 5 MW HAWT, characterized by radius R =61.5 m and by mean chord c = 3 m, with a nominal angular velocity Ωn = 1.266rad/sec. The first analysis performed is the steady state solution, where a uniform wind Vw = 11.4 m/s is considered and a collective pitch angle θ = 0.88◦ is imposed. During this step, the authors noticed that the proposed model is intrinsically periodic due to the effect of the wind and of the gravitational force. In order to reject this periodic trend in the model dynamics, the authors propose a collective repetitive control algorithm coupled with a PD controller. In particular, when the reference command to be tracked and/or the disturbance to be rejected are periodic signals with a fixed period, the repetitive control strategies can be applied due to their high precision, simple implementation and little performance dependency on system parameters. The functional scheme of a repetitive controller is quite simple and, given a periodic reference command, is composed of a control block Crc(s) usually added to an existing feedback control system. The control block contains and a free time-delay system eτs in a positive feedback loop, and a low-pass filter q(s). It should be noticed that, while the time delay term reduces the stability margin, on the other hand the low pass filter is added to ensure stability. It is worth noting that, in this work, the authors propose a phase shifting for the controller and the delay system has been modified as e^(−(T−γk)), where T is the period of the signal and γk is a phase shifting of k samples of the same periodic signal. It should be noticed that, the phase shifting technique is particularly useful in non-minimum phase systems, such as flexible structures. In fact, using the phase shifting, the iterative algorithm could reach the convergence also at high frequencies. Notice that, in our case study, the shifting of k samples depends both on the rotor angular velocity Ω and on the rotor azimuth angle Ψ: we refer to this controller as a spatial repetitive controller. The collective repetitive controller has also been coupled with a C(s) = PD(s), in order to dampen oscillations of the blades. The performance of the spatial repetitive controller is compared with an industrial PI controller. In particular, starting from wind speed velocity Vw = 11.4 m/s the controller is asked to maintain the nominal angular velocity Ωn = 1.266rad/s after an instantaneous increase of wind speed (Vw = 15 m/s). Then, a purely periodic external disturbance is introduced in order to stress the capabilities of the repetitive controller. The results of the simulations show that, contrary to a simple PI controller, the spatial repetitive-PD controller has the capability to reject both external disturbances and periodic trend in the model dynamics. Finally, the nominal value of the angular velocity is reached, in accordance with results obtained with commercial software for a turbine of the same type.

Keywords: Wind turbines, aeroelasticity, repetitive control, periodic systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298
2640 A Formal Approach for Proof Constructions in Cryptography

Authors: Markus Kaiser, Johannes Buchmann

Abstract:

In this article we explore the application of a formal proof system to verification problems in cryptography. Cryptographic properties concerning correctness or security of some cryptographic algorithms are of great interest. Beside some basic lemmata, we explore an implementation of a complex function that is used in cryptography. More precisely, we describe formal properties of this implementation that we computer prove. We describe formalized probability distributions (σ-algebras, probability spaces and conditional probabilities). These are given in the formal language of the formal proof system Isabelle/HOL. Moreover, we computer prove Bayes- Formula. Besides, we describe an application of the presented formalized probability distributions to cryptography. Furthermore, this article shows that computer proofs of complex cryptographic functions are possible by presenting an implementation of the Miller- Rabin primality test that admits formal verification. Our achievements are a step towards computer verification of cryptographic primitives. They describe a basis for computer verification in cryptography. Computer verification can be applied to further problems in cryptographic research, if the corresponding basic mathematical knowledge is available in a database.

Keywords: prime numbers, primality tests, (conditional) probabilitydistributions, formal proof system, higher-order logic, formalverification, Bayes' Formula, Miller-Rabin primality test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2639 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo

Abstract:

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Keywords: RSM, dependent variable, independent variables, efficiency, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2638 Efficacy of Recovery Tech Virtual Reality Rehabilitation System for Shoulder Impingement Syndrome

Authors: Kasra Afsahi, Maryam Soheilifar, Nazanin Vahed, Omid Seyed Esmaeili, S. Hossein Hosseini

Abstract:

The most common cause of shoulder pain occurs when rotator cuff tendons become trapped under the bony area in the shoulder. This pilot study was performed to evaluate the feasibility of Virtual Reality based rehabilitation of shoulder impingement syndrome in athletes. Three consecutive patients with subacromial impingement syndrome were enrolled. The participants were rehabilitated for 5 times a week for 4 weeks, 20 sessions in total (with duration of each session being 60 minutes). In addition to the conventional rehabilitation program, a 10-minute game-based virtual reality exercise was administered. Primary outcome measures were range of motion evaluated with goniometer, pain sensation, disability intensity using ‘The Disabilities of the Arm, Shoulder and Hand Questionnaire’, muscle strength using ‘dynamometer’; pain threshold with 'algometer' and level of satisfaction. There were significant improvements in the range of motion, pain sensation, disability, pain threshold and muscle strength compared to basis (P < 0.05). There were no major adverse effects. This study showed the usefulness of VR therapy as an adjunct to conventional physiotherapy in improving function in patients with shoulder impingement syndrome.

Keywords: Shoulder impingement syndrome, VR therapy, feasibility, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
2637 Computer Verification in Cryptography

Authors: Markus Kaiser, Johannes Buchmann

Abstract:

In this paper we explore the application of a formal proof system to verification problems in cryptography. Cryptographic properties concerning correctness or security of some cryptographic algorithms are of great interest. Beside some basic lemmata, we explore an implementation of a complex function that is used in cryptography. More precisely, we describe formal properties of this implementation that we computer prove. We describe formalized probability distributions (o--algebras, probability spaces and condi¬tional probabilities). These are given in the formal language of the formal proof system Isabelle/HOL. Moreover, we computer prove Bayes' Formula. Besides we describe an application of the presented formalized probability distributions to cryptography. Furthermore, this paper shows that computer proofs of complex cryptographic functions are possible by presenting an implementation of the Miller- Rabin primality test that admits formal verification. Our achievements are a step towards computer verification of cryptographic primitives. They describe a basis for computer verification in cryptography. Computer verification can be applied to further problems in crypto-graphic research, if the corresponding basic mathematical knowledge is available in a database.

Keywords: prime numbers, primality tests, (conditional) proba¬bility distributions, formal proof system, higher-order logic, formal verification, Bayes' Formula, Miller-Rabin primality test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
2636 Influences of Si and C- Doping on the Al-27 and N-14 Quardrupole Coupling Constants in AlN Nanotubes: A DFT Study

Authors: A.Seif, H.Aghaie, K.Majlesi

Abstract:

A computational study at the level density functional theory (DFT) was carried out to investigate the influences of Si and C-doping on the 14N and 27Al quadrupole coupling constant in the (10, 0) zigzag single ? walled Aluminum-Nitride nanotube (AlNNT). To this aim, a 1.16nm, length of AlNNT consisting of 40 Al atoms and 40 N atoms were selected where the end atoms are capped by hydrogen atom. To follow the purpose, three Si atoms and three C atoms were doped instead of three Al atoms and three N atoms as a central ring in the surface of the Si and C-doped AlNNT. At first both of systems optimized at the level of BLYP method and 6-31G (d) basis set and after that, the NQR parameters were calculated at the level BLYP method and 6-311+G** basis set in two optimized forms. The calculate CQ values for both optimized AlNNT systems, raw and Si and C-doped, reveal different electronic environments in the mentioned systems. It was also demonstrated that the end nuclei have the largest CQ values in both considered AlNNT systems. All the calculations were carried out using Gaussian 98 package of program.

Keywords: DFT, Quadrupole Coupling Constant, Si and CDoping, Single-Walled AlN nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550
2635 Ordinal Regression with Fenton-Wilkinson Order Statistics: A Case Study of an Orienteering Race

Authors: Joonas Pääkkönen

Abstract:

In sports, individuals and teams are typically interested in final rankings. Final results, such as times or distances, dictate these rankings, also known as places. Places can be further associated with ordered random variables, commonly referred to as order statistics. In this work, we introduce a simple, yet accurate order statistical ordinal regression function that predicts relay race places with changeover-times. We call this function the Fenton-Wilkinson Order Statistics model. This model is built on the following educated assumption: individual leg-times follow log-normal distributions. Moreover, our key idea is to utilize Fenton-Wilkinson approximations of changeover-times alongside an estimator for the total number of teams as in the notorious German tank problem. This original place regression function is sigmoidal and thus correctly predicts the existence of a small number of elite teams that significantly outperform the rest of the teams. Our model also describes how place increases linearly with changeover-time at the inflection point of the log-normal distribution function. With real-world data from Jukola 2019, a massive orienteering relay race, the model is shown to be highly accurate even when the size of the training set is only 5% of the whole data set. Numerical results also show that our model exhibits smaller place prediction root-mean-square-errors than linear regression, mord regression and Gaussian process regression.

Keywords: Fenton-Wilkinson approximation, German tank problem, log-normal distribution, order statistics, ordinal regression, orienteering, sports analytics, sports modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 833
2634 Reliability Indices Evaluation of SEIG Rotor Core Magnetization with Minimum Capacitive Excitation for WECs

Authors: Lokesh Varshney, R. K. Saket

Abstract:

This paper presents reliability indices evaluation of the rotor core magnetization of the induction motor operated as a self excited induction generator by using probability distribution approach and Monte Carlo simulation. Parallel capacitors with calculated minimum capacitive value across the terminals of the induction motor operated as a SEIG with unregulated shaft speed have been connected during the experimental study. A three phase, 4 poles, 50Hz, 5.5 hp, 12.3A, 230V induction motor coupled with DC Shunt Motor was tested in the electrical machine laboratory with variable reactive loads. Based on this experimental study, it is possible to choose a reliable induction machines operated as a SEIG for unregulated renewable energy application in remote area or where grid is not available. Failure density function, cumulative failure distribution function, survivor function, hazard model, probability of success and probability of failure for reliability evaluation of the three phase induction motor operating as a SEIG have been presented graphically in this paper.

Keywords: Residual magnetism, magnetization curve, induction motor, self excited induction generator, probability distribution, Monte Carlo simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126
2633 GMDH Modeling Based on Polynomial Spline Estimation and Its Applications

Authors: LI qiu-min, TIAN yi-xiang, ZHANG gao-xun

Abstract:

GMDH algorithm can well describe the internal structure of objects. In the process of modeling, automatic screening of model structure and variables ensure the convergence rate.This paper studied a new GMDH model based on polynomial spline  stimation. The polynomial spline function was used to instead of the transfer function of GMDH to characterize the relationship between the input variables and output variables. It has proved that the algorithm has the optimal convergence rate under some conditions. The empirical results show that the algorithm can well forecast Consumer Price Index (CPI).

Keywords: spline, GMDH, nonparametric, bias, forecast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
2632 Sorptive Storage of Natural Gas on Molecular Sieves: Dynamic Investigation

Authors: S. Al-Asheh, K. Al-Emadi

Abstract:

In recent years, there have been attempts to store natural gas in adsorptive form. This is called adsorptive natural gas, or ANG. The problem with this technology is the low sorption capacity. The purpose is to achieve compressed natural gas (CNG) capacity of 230 V/V. Further research is required to achieve such target. Several research studies have been performed with this target; through either the modification or development of new sorbents or the optimization of the operation sorption process itself. In this work, storage of methane on molecular sieves 5A and 13X was studied on dry basis, and on wet basis to certain extent. The temperature and the pressure dynamics were investigated. The results indicated that regardless of the charge pressure, the time for the peak temperature during the methane charge process is always the same. This can be used as a characteristic of the adsorbent. The total achieved deliveries using molecular sieves were much lower than that of activated carbons; 53.0 V/V for the case of 13X molecular sieves and 43 V/V for the case of 5A molecular sieves, both at 2oC and 4 MPa (580 psi). Investigation of charge pressure dynamic using wet molecular sieves at 2oC and a mass ratio of 0.5, revealed slowness of the process and unexpected behavior.

Keywords: Methane, Molecular sieves, Adsorption, Delivery, Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
2631 Simulation of Robotic Arm using Genetic Algorithm and AHP

Authors: V. K. Banga, Y. Singh, R. Kumar

Abstract:

In this paper, we have proposed a low cost optimized solution for the movement of a three-arm manipulator using Genetic Algorithm (GA) and Analytical Hierarchy Process (AHP). A scheme is given for optimizing the movement of robotic arm with the help of Genetic Algorithm so that the minimum energy consumption criteria can be achieved. As compared to Direct Kinematics, Inverse Kinematics evolved two solutions out of which the best-fit solution is selected with the help of Genetic Algorithm and is kept in search space for future use. The Inverse Kinematics, Fitness Value evaluation and Binary Encoding like tasks are simulated and tested. Although, three factors viz. Movement, Friction and Least Settling Time (or Min. Vibration) are used for finding the Fitness Function / Fitness Values, however some more factors can also be considered.

Keywords: Inverse Kinematics, Genetic Algorithm (GA), Analytical Hierarchy Process (AHP), Fitness Value, Fitness Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2964
2630 Effects of Virtual Reality on the Upper Extremity Spasticity and Motor Function in Patients with Stroke: A Single Blinded Randomized Controlled Trial

Authors: K. Afsahi, M. Soheilifar, S. H. Hosseini, O. S. Esmaeili, R. Kezemi, N. Mehrbod, N. Vahed, T. Hajiahmad, N. N. Ansari

Abstract:

Background: Stroke is a disabling neurological disease. Rehabilitative therapies are important treatment methods. This clinical trial was done to compare the effects of virtual reality (VR) beside conventional rehabilitation versus conventional rehabilitation alone on the spasticity and motor function in stroke patients. Materials and methods: In this open-label randomized controlled clinical trial, 40 consecutive patients with stable first-ever ischemic stroke in the past three to 12 months that were referred to a rehabilitation clinic in Tehran, Iran in 2020 were enrolled. After signing the informed written consent form, subjects were randomly assigned by block randomization of five in each block as cases with 1:1 into two groups of 20 cases; conventional plus VR therapy group: 45-minute conventional therapy session plus 15-minute VR therapy, and conventional group: 60-minute conventional therapy session. VR rehabilitation is designed and developed with different stages. Outcomes were Modified Ashworth scale, Recovery Stage score for motor function, range of motion (ROM) of shoulder abduction/wrist extension, and patients’ satisfaction rate. Data were compared after study termination. Results: The satisfaction rate among the patients was significantly better in combination group (P = 0.003). Only wrist extension was varied between groups and was better in combination group. The variables generally had statistically significant difference (P < 0.05). Conclusion: VR plus conventional rehabilitation therapy is superior versus conventional rehabilitation alone on the wrist and elbow spasticity and motor function in patients with stroke.

Keywords: Stroke, virtual therapy, efficacy, rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
2629 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate their moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The identical geometric and material conditions with Lipson’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range of mechanism, simpler and more accurate hyperbolic function models are proposed.

Keywords: Single-web angle connections, finite element method, moment and rotation, hyperbolic function models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2294
2628 Consumption Pattern and Dietary Practices of Pregnant Women in Odeda Local Government Area of Ogun State

Authors: Ademuyiwa, M. O., Sanni, S. A.

Abstract:

The importance of maternal nutritional practices during pregnancy cannot be overemphasized. This paper assessed the consumption pattern and dietary practices of 50 pregnant women selected using purposive sampling technique from three health care centres (Primary Health Care Centre, Obantoko; Primary Health Care Centre Alabata; and the General Hospital, Odeda) in Odeda Local Government Area of Ogun State, Nigeria. Structured questionnaire was used to elicit information on socioeconomic status, consumption pattern and dietary practices. Data were analyzed using the Statistical Package for Social Sciences (SPSS, 17). The results indicated that about 58% of the pregnant women were below the age of 30 while 42% were ages 28-40 years. Only 16% had tertiary education while (38%) had secondary education, 52% earn income through petty trading. On food intake, 52% got their energy source from rice on a daily basis, followed by pap (38%) and eko (34%). For protein intake, 36% consumed bean cake on a daily basis while 66% consumed moinmoin 2-3 times a week. Orange (48%) and Green Leafy vegetable (40%) accounted for the mostly consumed fruit and vegetable on daily basis. In terms of animal origin, fish (76%), meat (58%) and eggs (30%) were consumed daily, while chicken and snail were consumed occasionally by 54% and 42%, respectively. Forty-six percent (46%) of the pregnant women eat more than three times daily; while 60% of the women eat outside their homes with 42% respondents eat out lunch and only two percent least eaten out dinner. It is important to increase in awareness campaign to sensitize the pregnant women on the importance of good nutrition especially fruits, vegetables and dairy products. 

Keywords: Consumption Pattern, Dietary Practices, Pregnant, Women, Nigeria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4920
2627 A Real-time 4M Collecting Method for Production Information System

Authors: Seung Woo Lee, So Jeong Nam, Jai-Kyung Lee

Abstract:

It can be said that the business sector is faced with a range of challenges–a rapidly changing business environment, an increase and diversification of customers- demands and the consequent need for quick response–for having in place flexible management and production info systems. As a matter of fact, many manufacturers have adopted production info management systems such as MES and ERP. Nevertheless, managers are having difficulties obtaining ever-changing production process information in real time, or responding quickly to any change in production related needs on the basis of such information. This is because they rely on poor production info systems which are not capable of providing real-time factory settings. If the manufacturer doesn-t have a capacity for collecting or digitalizing the 4 Ms (Man, Machine, Material, Method), which are resources for production, on a real time basis, it might to difficult to effectively maintain the information on production process. In this regard, this paper will introduce some new alternatives to the existing methods of collecting the 4 Ms in real time, which are currently comprise the production field.

Keywords: 4M, Acquisition of Data on shop-floor, Real-time machine interface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4333
2626 Industrial Effects and Firm's Survival (Case Study: Iran- East Azarbaijan Province)

Authors: Ghaffar Tari

Abstract:

The aim of this paper is to investigate the effect of mean size of industry on survival of new firms in East-Azarbaijan province through 1981-2006 using hazard function. So the effect of two variables including mean employment of industry and mean capital of industry are investigated on firm's survival. The Industry & Mine Ministry database has used for data gathering and the data are analyzed using the semi-parametric cox regression model. The results of this study shows that there is a meaningful negative relationship between mean capital of industry and firm's survival, but the mean employment of industry has no meaningful effect on survival of new firms.

Keywords: Firm's Survival, Hazard Function, Mean Capital of Industry, Mean Employment of Industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1299
2625 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function

Authors: S. Anna Durai, E. Anna Saro

Abstract:

Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.

Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2624 Bioinformatics Profiling of Missense Mutations

Authors: I. Nassiri, B. Goliaei, M. Tavassoli

Abstract:

The ability to distinguish missense nucleotide substitutions that contribute to harmful effect from those that do not is a difficult problem usually accomplished through functional in vivo analyses. In this study, instead current biochemical methods, the effects of missense mutations upon protein structure and function were assayed by means of computational methods and information from the databases. For this order, the effects of new missense mutations in exon 5 of PTEN gene upon protein structure and function were examined. The gene coding for PTEN was identified and localized on chromosome region 10q23.3 as the tumor suppressor gene. The utilization of these methods were shown that c.319G>A and c.341T>G missense mutations that were recognized in patients with breast cancer and Cowden disease, could be pathogenic. This method could be use for analysis of missense mutation in others genes.

Keywords: Bioinformatics, missense mutations, PTEN tumorsuppressor gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
2623 A File Splitting Technique for Reducing the Entropy of Text Files

Authors: Abdel-Rahman M. Jaradat, , Mansour I. Irshid, Talha T. Nassar

Abstract:

A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

Keywords: Bit-wise compression, entropy, file splitting, source mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2622 Multiresolution Approach to Subpixel Registration by Linear Approximation of PSF

Authors: Erol Seke, Kemal Özkan

Abstract:

Linear approximation of point spread function (PSF) is a new method for determining subpixel translations between images. The problem with the actual algorithm is the inability of determining translations larger than 1 pixel. In this paper a multiresolution technique is proposed to deal with the problem. Its performance is evaluated by comparison with two other well known registration method. In the proposed technique the images are downsampled in order to have a wider view. Progressively decreasing the downsampling rate up to the initial resolution and using linear approximation technique at each step, the algorithm is able to determine translations of several pixels in subpixel levels.

Keywords: Point Spread Function, Subpixel translation, Superresolution, Multiresolution approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
2621 The Challenges of Cloud Computing Adoption in Nigeria

Authors: Chapman Eze Nnadozie

Abstract:

Cloud computing, a technology that is made possible through virtualization within networks represents a shift from the traditional ownership of infrastructure and other resources by distinct organization to a more scalable pattern in which computer resources are rented online to organizations on either as a pay-as-you-use basis or by subscription. In other words, cloud computing entails the renting of computing resources (such as storage space, memory, servers, applications, networks, etc.) by a third party to its clients on a pay-as-go basis. It is a new innovative technology that is globally embraced because of its renowned benefits, profound of which is its cost effectiveness on the part of organizations engaged with its services. In Nigeria, the services are provided either directly to companies mostly by the key IT players such as Microsoft, IBM, and Google; or in partnership with some other players such as Infoware, Descasio, and Sunnet. This action enables organizations to rent IT resources on a pay-as-you-go basis thereby salvaging them from wastages accruable on acquisition and maintenance of IT resources such as ownership of a separate data centre. This paper intends to appraise the challenges of cloud computing adoption in Nigeria, bearing in mind the country’s peculiarities’ in terms of infrastructural development. The methodologies used in this paper include the use of research questionnaires, formulated hypothesis, and the testing of the formulated hypothesis. The major findings of this paper include the fact that there are some addressable challenges to the adoption of cloud computing in Nigeria. Furthermore, the country will gain significantly if the challenges especially in the area of infrastructural development are well addressed. This is because the research established the fact that there are significant gains derivable by the adoption of cloud computing by organizations in Nigeria. However, these challenges can be overturned by concerted efforts in the part of government and other stakeholders.

Keywords: Cloud computing, data centre, infrastructure, IT resources, network, servers, virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2620 Time Independent Behavior of Tomato Paste

Authors: A. Heidarinasab, V. Moghaddam Nansa

Abstract:

This paper deals with rheological behavior of tomato paste from the view point of time independent properties inclusive of processing variables such as sample temperature which influence on rheological properties as well as breaking temperature and concentration which beside the rheological properties, influence on the quality of final product. With this aim 10 tomato paste samples at various concentrations (17-25%) and breaking temperatures (65- 85 C o ) have been produced. The experimental results showed tomato paste behaves as a non-Newtonian semi-fluid which follows power law model that consistency coefficient (K) is supposed function of breaking temperature, concentration and sample temperature with consideration to superimpose function.

Keywords: Breaking temperature, Concentration, Power law, Rheology, Time independent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3392
2619 Exponential Stability Analysis for Uncertain Neural Networks with Discrete and Distributed Time-Varying Delays

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for uncertain neural networks with discrete and distributed time-varying delays. Together with a suitable augmented Lyapunov Krasovskii function, zero equalities, reciprocally convex approach and a novel sufficient condition to guarantee the exponential stability of the considered system. The several exponential stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability, Uncertain Neural networks, LMI approach, Lyapunov-Krasovskii function, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
2618 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA

Authors: Limouzade E., Joorabian M.

Abstract:

Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.

Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
2617 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
2616 MPPT Operation for PV Grid-connected System using RBFNN and Fuzzy Classification

Authors: A. Chaouachi, R. M. Kamel, K. Nagasaka

Abstract:

This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW Photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three Radial Basis Function Neural Networks (RBFNN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated RBFNN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology, comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and non-linear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network.

Keywords: MPPT, neuro-fuzzy, RBFN, grid-connected, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3182