Search results for: Cost optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3648

Search results for: Cost optimization

3198 Estimating Cost of R&D Activities for Feasibility Study of Public R&D Investment

Authors: Ie-jung Choi

Abstract:

Since the feasibility study of R&D programs have been initiated for efficient public R&D investments, year 2008, feasibility studies have improved in terms of precision. Although experience related to these studies of R&D programs have increased to a certain point, still methodological improvement is required. The feasibility studies of R&D programs are consisted of various viewpoints, such as technology, policy, and economics. This research is to provide improvement methods to the economic perspective; especially the cost estimation process of R&D activities. First of all, the fundamental concept of cost estimation is reviewed. After the review, a statistical and econometric analysis method is applied as empirical analysis. Conclusively, limitations and further research directions are provided.

Keywords: Cost Estimation, R&D Program, Feasibility AnalysisStudy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
3197 Compact Binary Tree Representation of Logic Function with Enhanced Throughput

Authors: Padmanabhan Balasubramanian, C. Ardil

Abstract:

An effective approach for realizing the binary tree structure, representing a combinational logic functionality with enhanced throughput, is discussed in this paper. The optimization in maximum operating frequency was achieved through delay minimization, which in turn was possible by means of reducing the depth of the binary network. The proposed synthesis methodology has been validated by experimentation with FPGA as the target technology. Though our proposal is technology independent, yet the heuristic enables better optimization in throughput even after technology mapping for such Boolean functionality; whose reduced CNF form is associated with a lesser literal cost than its reduced DNF form at the Boolean equation level. For cases otherwise, our method converges to similar results as that of [12]. The practical results obtained for a variety of case studies demonstrate an improvement in the maximum throughput rate for Spartan IIE (XC2S50E-7FT256) and Spartan 3 (XC3S50-4PQ144) FPGA logic families by 10.49% and 13.68% respectively. With respect to the LUTs and IOBUFs required for physical implementation of the requisite non-regenerative logic functionality, the proposed method enabled savings to the tune of 44.35% and 44.67% respectively, over the existing efficient method available in literature [12].

Keywords: Binary logic tree, FPGA based design, Boolean function, Throughput rate, CNF, DNF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
3196 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137
3195 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization

Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi

Abstract:

The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.

Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
3194 Economic Evaluation of Degradation by Corrosion of an on-Grid Battery Energy Storage System: A Case Study in Algeria Territory

Authors: Fouzia Brihmat

Abstract:

Economic planning models, which are used to build microgrids and Distributed Energy Resources (DER), are the current norm for expressing such confidence. These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1 GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation, the trade-off is that the model is more accurate, but the computation takes longer. We initially utilized the optimizer to run the model without multi-year in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower Cost Of Energy (COE) of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated.

Keywords: Battery, Corrosion, Diesel, Economic planning optimization, Hybrid energy system, HES, Lead-acid battery, Li-ion battery, multi-year planning, microgrid, price forecast, total net present cost, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
3193 Optimization Parameters of Rotary Positioner Controller using CDM

Authors: Meemongkol A., Tipsuwanporn V., Numsomran A.

Abstract:

The authors present optimization parameters of rotary positioner controller in hard disk drive servo track writing process using coefficient diagram method; CDM. Due to estimation parameters in PI Positioning Control System by expected ratio method cannot meet the required specification of response effectively, we suggest coefficient diagram method for defining controller parameters under the requirement of the system. Finally, the simulation results show that our proposed method can improve the problem in tuning parameter of rotary positioner controller. It is satisfied specification of performance of control system. Furthermore, it is very convenient as a fast adjustment damping ratio as well as a high speed response.

Keywords: Optimization Parameters, Rotary Positioner, CDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548
3192 Application of Artificial Neural Network to Forecast Actual Cost of a Project to Improve Earned Value Management System

Authors: Seyed Hossein Iranmanesh, Mansoureh Zarezadeh

Abstract:

This paper presents an application of Artificial Neural Network (ANN) to forecast actual cost of a project based on the earned value management system (EVMS). For this purpose, some projects randomly selected based on the standard data set , and it is produced necessary progress data such as actual cost ,actual percent complete , baseline cost and percent complete for five periods of project. Then an ANN with five inputs and five outputs and one hidden layer is trained to produce forecasted actual costs. The comparison between real and forecasted data show better performance based on the Mean Absolute Percentage Error (MAPE) criterion. This approach could be applicable to better forecasting the project cost and result in decreasing the risk of project cost overrun, and therefore it is beneficial for planning preventive actions.

Keywords: Earned Value Management System (EVMS), Artificial Neural Network (ANN), Estimate At Completion, Forecasting Methods, Project Performance Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
3191 Probabilistic Model Development for Project Performance Forecasting

Authors: Milad Eghtedari Naeini, Gholamreza Heravi

Abstract:

In this paper, based on the past project cost and time performance, a model for forecasting project cost performance is developed. This study presents a probabilistic project control concept to assure an acceptable forecast of project cost performance. In this concept project activities are classified into sub-groups entitled control accounts. Then obtain the Stochastic S-Curve (SS-Curve), for each sub-group and the project SS-Curve is obtained by summing sub-groups- SS-Curves. In this model, project cost uncertainties are considered through Beta distribution functions of the project activities costs required to complete the project at every selected time sections through project accomplishment, which are extracted from a variety of sources. Based on this model, after a percentage of the project progress, the project performance is measured via Earned Value Management to adjust the primary cost probability distribution functions. Then, accordingly the future project cost performance is predicted by using the Monte-Carlo simulation method.

Keywords: Monte Carlo method, Probabilistic model, Project forecasting, Stochastic S-curve

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2717
3190 Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: Research and development, technology and Innovation, lithium-ion-battery production, load carrier development process, cost valuation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2277
3189 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 630
3188 Parallel Particle Swarm Optimization Optimized LDI Controller with Lyapunov Stability Criterion for Nonlinear Structural Systems

Authors: P.-W. Tsai, W.-L. Hong, C.-W. Chen, C.-Y. Chen

Abstract:

In this paper, we present a neural-network (NN) based approach to represent a nonlinear Tagagi-Sugeno (T-S) system. A linear differential inclusion (LDI) state-space representation is utilized to deal with the NN models. Taking advantage of the LDI representation, the stability conditions and controller design are derived for a class of nonlinear structural systems. Moreover, the concept of utilizing the Parallel Particle Swarm Optimization (PPSO) algorithm to solve the common P matrix under the stability criteria is given in this paper.

Keywords: Lyapunov Stability, Parallel Particle Swarm Optimization, Linear Differential Inclusion, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
3187 Solution of Optimal Reactive Power Flow using Biogeography-Based Optimization

Authors: Aniruddha Bhattacharya, Pranab Kumar Chattopadhyay

Abstract:

Optimal reactive power flow is an optimization problem with one or more objective of minimizing the active power losses for fixed generation schedule. The control variables are generator bus voltages, transformer tap settings and reactive power output of the compensating devices placed on different bus bars. Biogeography- Based Optimization (BBO) technique has been applied to solve different kinds of optimal reactive power flow problems subject to operational constraints like power balance constraint, line flow and bus voltages limits etc. BBO searches for the global optimum mainly through two steps: Migration and Mutation. In the present work, BBO has been applied to solve the optimal reactive power flow problems on IEEE 30-bus and standard IEEE 57-bus power systems for minimization of active power loss. The superiority of the proposed method has been demonstrated. Considering the quality of the solution obtained, the proposed method seems to be a promising one for solving these problems.

Keywords: Active Power Loss, Biogeography-Based Optimization, Migration, Mutation, Optimal Reactive Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4277
3186 Modeling and Optimization of Process Parameters in PMEDM by Genetic Algorithm

Authors: Farhad Kolahan, Mohammad Bironro

Abstract:

This paper addresses modeling and optimization of process parameters in powder mixed electrical discharge machining (PMEDM). The process output characteristics include metal removal rate (MRR) and electrode wear rate (EWR). Grain size of Aluminum powder (S), concentration of the powder (C), discharge current (I) pulse on time (T) are chosen as control variables to study the process performance. The experimental results are used to develop the regression models based on second order polynomial equations for the different process characteristics. Then, a genetic algorithm (GA) has been employed to determine optimal process parameters for any desired output values of machining characteristics.

Keywords: Regression modeling, PMEDM, GeneticAlgorithm, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1493
3185 Locomotion Effects of Redundant Degrees of Freedom in Multi-Legged Quadruped Robots

Authors: Hossein Keshavarz, Alejandro Ramirez-Serrano

Abstract:

Energy efficiency and locomotion speed are two key parameters for legged robots, thus finding ways to improve them are important. This paper proposes a locomotion framework to analyze the energy usage and speed of quadruped robots via a Genetic Algorithm (GA) optimization process. For this, a quadruped robot platform with joint redundancy in its hind legs that we believe will help multi-legged robots improve their speed and energy consumption is used. ContinuO, the quadruped robot of interest, has 14 active degrees of freedom (DoFs), including three DoFs for each front leg, and unlike previously developed quadruped robots, four DoFs for each hind leg. ContinuO aims to realize a cost-effective quadruped robot for real-world scenarios with high-speeds and the ability to overcome large obstructions. The proposed framework is used to locomote the robot and analyze its energy consumed at diverse stride lengths and locomotion speeds. The analysis is performed by comparing the obtained results in two modes, with and without the joint redundancy on the robot’s hind legs.

Keywords: Genetic algorithm optimization, locomotion path planning, quadruped robots, redundant legs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68
3184 Status and Proposed Models of Backhauling System in Thailand

Authors: Tarathorn Podcharathitikull, Jirarat Teeravaraprug

Abstract:

Transportation cost is the highest cost in logistics cost of Thailand, and truck transportation is counted as about 90% of the overall transportation cost. The main problem of truck transportation is backhauling. Backhauling has become an attractive cost-saving approach in logistics. To explore such opportunities, this paper investigated the current backhauling systems in Thailand. It was found that the backhauling problem is attracted to both governmental agencies and private sector. They gave attempts to build backhauling systems. This paper investigated two systems built by governmental agencies and one by private sector. Moreover, based on the interviews with the system representatives and users, pros and cons of the systems were found. The obstacles and challenges were obtained. This paper finally proposed a conceptual model of to-be backhauling system in Thailand.

Keywords: Backhauling system, Backhauls, interview, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
3183 Clarification of the Essential of Life Cycle Cost upon Decision-Making Process: An Empirical Study in Building Projects

Authors: Ayedh Alqahtani, Andrew Whyte

Abstract:

Life Cycle Cost (LCC) is one of the goals and key pillars of the construction management science because it comprises many of the functions and processes necessary, which assist organisations and agencies to achieve their goals. It has therefore become important to design and control assets during their whole life cycle, from the design and planning phase through to disposal phase. LCCA is aimed to improve the decision making system in the ownership of assets by taking into account all the cost elements including to the asset throughout its life. Current application of LCC approach is impractical during misunderstanding of the advantages of LCC. This main objective of this research is to show a different relationship between capital cost and long-term running costs. One hundred and thirty eight actual building projects in United Kingdom (UK) were used in order to achieve and measure the above-mentioned objective of the study. The result shown that LCC is one of the most significant tools should be considered on the decision making process.

Keywords: Building projects, Capital cost, Life cycle cost, Maintenance costs, Operation costs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
3182 A Theory in Optimization of Ad-hoc Routing Algorithms

Authors: M. Kargar, F.Fartash, T. Saderi, M. Ebrahimi Dishabi

Abstract:

In this paper optimization of routing in ad-hoc networks is surveyed and a new method for reducing the complexity of routing algorithms is suggested. Using binary matrices for each node in the network and updating it once the routing is done, helps nodes to stop repeating the routing protocols in each data transfer. The algorithm suggested can reduce the complexity of routing to the least amount possible.

Keywords: Ad-hoc Networks, Algorithm, Protocol, RoutingTrain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
3181 Multiple Input Multiple Output Detection Using Roulette Wheel Based Ant Colony Optimization Technique

Authors: B. Rebekka, B. Malarkodi

Abstract:

This paper describes an approach to detect the transmitted signals for 2×2 Multiple Input Multiple Output (MIMO) setup using roulette wheel based ant colony optimization technique. The results obtained are compared with classical zero forcing and least mean square techniques. The detection rates achieved using this technique are consistently larger than the one achieved using classical methods for 50 number of attempts with two different antennas transmitting the input stream from a user. This paves the path to use alternative techniques to improve the throughput achieved in advanced networks like Long Term Evolution (LTE) networks.

Keywords: MIMO, ant colony optimization, roulette wheel, soft computing, LTE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
3180 Crashworthiness Optimization of an Automotive Front Bumper in Composite Material

Authors: S. Boria

Abstract:

In the last years, the crashworthiness of an automotive body structure can be improved, since the beginning of the design stage, thanks to the development of specific optimization tools. It is well known how the finite element codes can help the designer to investigate the crashing performance of structures under dynamic impact. Therefore, by coupling nonlinear mathematical programming procedure and statistical techniques with FE simulations, it is possible to optimize the design with reduced number of analytical evaluations. In engineering applications, many optimization methods which are based on statistical techniques and utilize estimated models, called meta-models, are quickly spreading. A meta-model is an approximation of a detailed simulation model based on a dataset of input, identified by the design of experiments (DOE); the number of simulations needed to build it depends on the number of variables. Among the various types of meta-modeling techniques, Kriging method seems to be excellent in accuracy, robustness and efficiency compared to other ones when applied to crashworthiness optimization. Therefore the application of such meta-model was used in this work, in order to improve the structural optimization of a bumper for a racing car in composite material subjected to frontal impact. The specific energy absorption represents the objective function to maximize and the geometrical parameters subjected to some design constraints are the design variables. LS-DYNA codes were interfaced with LS-OPT tool in order to find the optimized solution, through the use of a domain reduction strategy. With the use of the Kriging meta-model the crashworthiness characteristic of the composite bumper was improved.

Keywords: Composite material, crashworthiness, finite element analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1129
3179 An Overview on Aluminum Matrix Composites: Liquid State Processing

Authors: S. P. Jordan, G. Christian, S. P. Jeffs

Abstract:

Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods.

Keywords: Aluminum matrix composites, light-weighting, hybrid squeeze casting, strategically placed reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 720
3178 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization

Authors: N. Janjamraj, A. Oonsivilai

Abstract:

This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.

Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2520
3177 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System

Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta

Abstract:

This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also, overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate, which minimize the total, incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality, which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.

Keywords: Deterioration, simulation, subcontracting, production planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
3176 Design Optimization of a Compact Quadrupole Electromagnet for CLS 2.0

Authors: Md. Armin Islam, Les Dallin, Mark Boland, W. J. Zhang

Abstract:

This paper reports a study on the optimal magnetic design of a compact quadrupole electromagnet for the Canadian Light Source (CLS 2.0). The nature of the design is to determine a quadrupole with low relative higher order harmonics and better field quality. The design problem was formulated as an optimization model, in which the objective function is the higher order harmonics (multipole errors) and the variable to be optimized is the material distribution on the pole. The higher order harmonics arose in the quadrupole due to truncating the ideal hyperbola at a certain point to make the pole. In this project, the arisen harmonics have been optimized both transversely and longitudinally by adjusting material on the poles in a controlled way. For optimization, finite element analysis (FEA) has been conducted. A better higher order harmonics amplitudes and field quality have been achieved through the optimization. On the basis of the optimized magnetic design, electrical and cooling calculation has been performed for the magnet.

Keywords: Drift, electrical, and cooling calculation, integrated field, higher order harmonics (multipole errors), magnetic field gradient, quadrupole.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 817
3175 Optimization of Kinematics for Birds and UAVs Using Evolutionary Algorithms

Authors: Mohamed Hamdaoui, Jean-Baptiste Mouret, Stephane Doncieux, Pierre Sagaut

Abstract:

The aim of this work is to present a multi-objective optimization method to find maximum efficiency kinematics for a flapping wing unmanned aerial vehicle. We restrained our study to rectangular wings with the same profile along the span and to harmonic dihedral motion. It is assumed that the birdlike aerial vehicle (whose span and surface area were fixed respectively to 1m and 0.15m2) is in horizontal mechanically balanced motion at fixed speed. We used two flight physics models to describe the vehicle aerodynamic performances, namely DeLaurier-s model, which has been used in many studies dealing with flapping wings, and the model proposed by Dae-Kwan et al. Then, a constrained multi-objective optimization of the propulsive efficiency is performed using a recent evolutionary multi-objective algorithm called є-MOEA. Firstly, we show that feasible solutions (i.e. solutions that fulfil the imposed constraints) can be obtained using Dae-Kwan et al.-s model. Secondly, we highlight that a single objective optimization approach (weighted sum method for example) can also give optimal solutions as good as the multi-objective one which nevertheless offers the advantage of directly generating the set of the best trade-offs. Finally, we show that the DeLaurier-s model does not yield feasible solutions.

Keywords: Flight physics, evolutionary algorithm, optimization, Pareto surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
3174 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads

Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza

Abstract:

This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.

Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
3173 Financial Burden of Family for the Children with Autism Spectrum Disorder

Authors: M. R. Bhuiyan, S. M. M. Hossain, M. Z. Islam

Abstract:

Autism Spectrum Disorder (ASD) is the fastest growing serious developmental disorder characterized by social deficits, communicative difficulties, and repetitive behaviors. ASD is an emerging public health issue globally which is associated with huge financial burden to the family, community and the nation. The aim of this study was to assess the financial burden of family for the children with Autism spectrum Disorder. This cross-sectional study was carried out from July 2015 to June 2016 among 154 children with ASD to assess the financial burden of family. Data were collected by face-to-face interview with semi-structured questionnaire following systematic random sampling technique. Majority (73.4%) children were male and mean (±SD) age was 6.66 ± 2.97 years. Most (88.8%) of the children were from urban areas with average monthly family income Tk. 41785.71±23936.45. Average monthly direct cost of the children was Tk.17656.49 ± 9984.35, while indirect cost was Tk. 13462.90 ± 9713.54 and total treatment cost was Tk. 23076.62 ± 15341.09. Special education cost (Tk. 4871.00), cost of therapy (Tk. 4124.07) and travel cost (Tk. 3988.31) were the major types of direct cost, while loss of income (Tk.14570.18) was the chief indirect cost incurred by the families. The study found that majority (59.8%) of the children attended special schools were incurred Tk.20001-78700 as total treatment cost, which were statistically significant (p<0.001). Again, families with higher monthly family income incurred higher treatment cost (r=0.526, p<0.05). Difference between mean direct and indirect cost was found significant (t=4.190, df=61, p<0.001). According to the analysis of variance, mean difference of father’s educational status among direct cost (F=10.337, p<0.001) and total treatment cost (F=7.841, p<0.001), which were statistically significant. The study revealed that maximum children with ASD were under five years, three-fourth were male. According to monthly family income, maximum family were in middle class. The study recommends cost effective interventions and financial safety-net measures to reduce the financial burden of families for the children with ASD.

Keywords: Autism spectrum disorder, financial burden, direct cost, indirect cost, Special education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1233
3172 Evolutionary Techniques for Model Order Reduction of Large Scale Linear Systems

Authors: S. Panda, J. S. Yadav, N. P. Patidar, C. Ardil

Abstract:

Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. In this paper both PSO and GA optimization are employed for finding stable reduced order models of single-input- single-output large-scale linear systems. Both the techniques guarantee stability of reduced order model if the original high order model is stable. PSO method is based on the minimization of the Integral Squared Error (ISE) between the transient responses of original higher order model and the reduced order model pertaining to a unit step input. Both the methods are illustrated through numerical example from literature and the results are compared with recently published conventional model reduction technique.

Keywords: Genetic Algorithm, Particle Swarm Optimization, Order Reduction, Stability, Transfer Function, Integral Squared Error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722
3171 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review

Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough

Abstract:

The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.

Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246
3170 An Efficient Ant Colony Optimization Algorithm for Multiobjective Flow Shop Scheduling Problem

Authors: Ahmad Rabanimotlagh

Abstract:

In this paper an ant colony optimization algorithm is developed to solve the permutation flow shop scheduling problem. In the permutation flow shop scheduling problem which has been vastly studied in the literature, there are a set of m machines and a set of n jobs. All the jobs are processed on all the machines and the sequence of jobs being processed is the same on all the machines. Here this problem is optimized considering two criteria, makespan and total flow time. Then the results are compared with the ones obtained by previously developed algorithms. Finally it is visible that our proposed approach performs best among all other algorithms in the literature.

Keywords: Scheduling, Flow shop, Ant colony optimization, Makespan, Flow time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
3169 Enhanced Interference Management Technique for Multi-Cell Multi-Antenna System

Authors: Simon E. Uguru, Victor E. Idigo, Obinna S. Oguejiofor, Naveed Nawaz

Abstract:

As the deployment of the Fifth Generation (5G) mobile communication networks take shape all over the world, achieving spectral efficiency, energy efficiency, and dealing with interference are among the greatest challenges encountered so far. The aim of this study is to mitigate inter-cell interference (ICI) in a multi-cell multi-antenna system while maximizing the spectral efficiency of the system. In this study, a system model was devised that showed a miniature representation of a multi-cell multi-antenna system. Based on this system model, a convex optimization problem was formulated to maximize the spectral efficiency of the system while mitigating the ICI. This optimization problem was solved using CVX, which is a modeling system for constructing and solving discipline convex programs. The solutions to the optimization problem are sub-optimal coordinated beamformers. These coordinated beamformers direct each data to the served user equipments (UEs) in each cell without interference during downlink transmission, thereby maximizing the system-wide spectral efficiency.

Keywords: coordinated beamforming, convex optimization, inter-cell interference, multi-antenna, multi-cell, spectral efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448