Search results for: Real Coded Genetic Algorithm
801 Labview-Based System for Fiber Links Events Detection
Authors: Bo Liu, Qingshan Kong, Weiqing Huang
Abstract:
With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.
Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803800 Investigation of Chord Protocol in Peer to Peer-Wireless Mesh Network with Mobility
Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad
Abstract:
File sharing in networks is generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. However, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.Keywords: Wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD protocol, DHT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2119799 Effectual Reversible Watermarking Method for Hide the Patient Details in Brain Tumor Image
Authors: K. Amudha, C. Nelson Kennedy Babu, S. Balu
Abstract:
The security of the medical images and its related data is the major research area which is to be concentrated in today’s era. Security in the medical image indicates that the physician may hide patients’ related data in the medical image and transfer it safely to a defined location using reversible watermarking. Many reversible watermarking methods had proposed over the decade. This paper enhances the security level in brain tumor images to hide the patient’s detail, which has to be conferred with other physician’s suggestions. The details or the information will be hidden in Non-ROI area of the image by using the block cipher algorithm. The block cipher uses different keys to extract the details that are difficult for the intruder to detect all the keys and to spot the details, which are the key advantage of this method. The ROI is the tumor area and Non-ROI is the area rest of ROI. The Non-ROI should not be spoiled in any cause and the details in the Non-ROI should be extracted correctly. The reversible watermarking method proposed in this paper performs well when compared to existing methods in the process of extraction of an original image and providing information security.Keywords: Brain tumor images, Block Cipher, Reversible watermarking, ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337798 Statistical Analysis of Stresses in Rigid Pavement
Authors: Aleš Florian, Lenka Ševelová, Rudolf Hela
Abstract:
Complex statistical analysis of stresses in concrete slab of the real type of rigid pavement is performed. The computational model of the pavement is designed as a spatial (3D) model, is based on a nonlinear variant of the finite element method that respects the structural nonlinearity, enables to model different arrangement of joints, and the entire model can be loaded by the thermal load. Interaction of adjacent slabs in joints and contact of the slab and the subsequent layer are modeled with help of special contact elements. Four concrete slabs separated by transverse and longitudinal joints and the additional subgrade layers and soil to the depth of about 3m are modeled. The thickness of individual layers, physical and mechanical properties of materials, characteristics of joints, and the temperature of the upper and lower surface of slabs are supposed to be random variables. The modern simulation technique Updated Latin Hypercube Sampling with 20 simulations is used for statistical analysis. As results, the estimates of basic statistics of the principal stresses s1 and s3 in 53 points on the upper and lower surface of the slabs are obtained.Keywords: concrete, FEM, pavement, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575797 Performance Evaluation of Data Mining Techniques for Predicting Software Reliability
Authors: Pradeep Kumar, Abdul Wahid
Abstract:
Accurate software reliability prediction not only enables developers to improve the quality of software but also provides useful information to help them for planning valuable resources. This paper examines the performance of three well-known data mining techniques (CART, TreeNet and Random Forest) for predicting software reliability. We evaluate and compare the performance of proposed models with Cascade Correlation Neural Network (CCNN) using sixteen empirical databases from the Data and Analysis Center for Software. The goal of our study is to help project managers to concentrate their testing efforts to minimize the software failures in order to improve the reliability of the software systems. Two performance measures, Normalized Root Mean Squared Error (NRMSE) and Mean Absolute Errors (MAE), illustrate that CART model is accurate than the models predicted using Random Forest, TreeNet and CCNN in all datasets used in our study. Finally, we conclude that such methods can help in reliability prediction using real-life failure datasets.
Keywords: Classification, Cascade Correlation Neural Network, Random Forest, Software reliability, TreeNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839796 Examining Foreign Student Visual Perceptions of Online Marketing Tools at a Hungarian University
Authors: Anita Kéri
Abstract:
Higher education marketing has been a widely researched field in recent years. Due to the increasing competition among higher education institutions worldwide, it has become crucial to target foreign students with effective marketing tools. Online marketing tools became central to attracting, retaining, and satisfying the needs of foreign students. Therefore, the aim of the current study is to reveal how the online marketing tools of a Hungarian university are perceived visually by its first-year foreign students, with special emphasis on the university webpage content. Eye-camera tracking and retrospective think aloud interviews were used to measure visual perceptions. Results show that freshmen students remember those online marketing content more that have familiar content on them. Pictures of real-life students and their experiences attract students’ attention more, and they also remember information on these webpage elements more, compared to designs with stock photos. This research uses eye camera tracking in the field of higher education marketing, thereby providing insight into the perception of online higher education marketing for foreign students.
Keywords: Higher education, marketing, eye-camera, visual perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168795 Inverse Heat Conduction Analysis of Cooling on Run Out Tables
Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi
Abstract:
In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.
Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699794 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks
Authors: Abdallah Al Sabbagh
Abstract:
Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486793 Intelligent Earthquake Prediction System Based On Neural Network
Authors: Emad Amar, Tawfik Khattab, Fatma Zada
Abstract:
Predicting earthquakes is an important issue in the study of geography. Accurate prediction of earthquakes can help people to take effective measures to minimize the loss of personal and economic damage, such as large casualties, destruction of buildings and broken of traffic, occurred within a few seconds. United States Geological Survey (USGS) science organization provides reliable scientific information about Earthquake Existed throughout history & the Preliminary database from the National Center Earthquake Information (NEIC) show some useful factors to predict an earthquake in a seismic area like Aleutian Arc in the U.S. state of Alaska. The main advantage of this prediction method that it does not require any assumption, it makes prediction according to the future evolution of the object's time series. The article compares between simulation data result from trained BP and RBF neural network versus actual output result from the system calculations. Therefore, this article focuses on analysis of data relating to real earthquakes. Evaluation results show better accuracy and higher speed by using radial basis functions (RBF) neural network.
Keywords: BP neural network, Prediction, RBF neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218792 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine
Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen
Abstract:
Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.
Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846791 Performance Improvement of MAC Protocols for Broadband Power-Line Access Networks of Developing Countries: A Case of Tanzania
Authors: Abdi T. Abdalla, Justinian Anatory
Abstract:
This paper investigates the possibility of improving throughputs of some Media Access Controls protocols such as ALOHA, slotted ALOHA and Carrier Sense Multiple Access with Collision Avoidance with the aim of increasing the performance of Powerline access networks. In this investigation, the real Powerline network topology in Tanzania located in Dar es Salaam City, Kariakoo area was used as a case study. During this investigation, Wireshark Network Protocol Analyzer was used to analyze data traffic of similar existing network for projection purpose and then the data were simulated using MATLAB. This paper proposed and analyzed three improvement techniques based on collision domain, packet length and combination of the two. From the results, it was found that the throughput of Carrier Sense Multiple Access with Collision Avoidance protocol improved noticeably while ALOHA and slotted ALOHA showed insignificant changes especially when the hybrid techniques were employed.
Keywords: Access Network, ALOHA, Broadband Powerline Communication, Slotted ALOHA, CSMA/CA and MAC Protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031790 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems
Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel
Abstract:
Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.
Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834789 Weld Defect Detection in Industrial Radiography Based Digital Image Processing
Authors: N. Nacereddine, M. Zelmat, S. S. Belaïfa, M. Tridi
Abstract:
Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.
Keywords: Digital image processing, global and localapproaches, radiographic film, weld defect.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4072788 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 897787 An Approach for Reducing the End-to-end Delay and Increasing Network Lifetime in Mobile Adhoc Networks
Authors: R. Asokan, A. M. Natarajan
Abstract:
Mobile adhoc network (MANET) is a collection of mobile devices which form a communication network with no preexisting wiring or infrastructure. Multiple routing protocols have been developed for MANETs. As MANETs gain popularity, their need to support real time applications is growing as well. Such applications have stringent quality of service (QoS) requirements such as throughput, end-to-end delay, and energy. Due to dynamic topology and bandwidth constraint supporting QoS is a challenging task. QoS aware routing is an important building block for QoS support. The primary goal of the QoS aware protocol is to determine the path from source to destination that satisfies the QoS requirements. This paper proposes a new energy and delay aware protocol called energy and delay aware TORA (EDTORA) based on extension of Temporally Ordered Routing Protocol (TORA).Energy and delay verifications of query packet have been done in each node. Simulation results show that the proposed protocol has a higher performance than TORA in terms of network lifetime, packet delivery ratio and end-to-end delay.Keywords: EDTORA, Mobile Adhoc Networks, QoS, Routing, TORA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390786 Fuzzy Risk-Based Life Cycle Assessment for Estimating Environmental Aspects in EMS
Authors: Kevin Fong-Rey Liu, Ken Yeh, Cheng-Wu Chen, Han-Hsi Liang
Abstract:
Environmental aspects plays a central role in environmental management system (EMS) because it is the basis for the identification of an organization-s environmental targets. The existing methods for the assessment of environmental aspects are grouped into three categories: risk assessment-based (RA-based), LCA-based and criterion-based methods. To combine the benefits of these three categories of research, this study proposes an integrated framework, combining RA-, LCA- and criterion-based methods. The integrated framework incorporates LCA techniques for the identification of the causal linkage for aspect, pathway, receptor and impact, uses fuzzy logic to assess aspects, considers fuzzy conditions, in likelihood assessment, and employs a new multi-criteria decision analysis method - multi-criteria and multi-connection comprehensive assessment (MMCA) - to estimate significant aspects in EMS. The proposed model is verified, using a real case study and the results show that this method successfully prioritizes the environmental aspects.Keywords: Environmental management system, environmental aspect, risk assessment, life cycle assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2219785 Software Engineering Mobile Learning Software Solution Using Task Based Learning Approach
Authors: Bekim Fetaji, Majlinda Fetaji
Abstract:
The development and use of mobile devices as well as its integration within education systems to deliver electronic contents and to support real-time communications was the focus of this research. In order to investigate the software engineering issues in using mobile devices a research on electronic content was initiated. The Developed MP3 mobile software solution was developed as a prototype for testing and developing a strategy for designing a usable m-learning environment. The mobile software solution was evaluated using mobile device using the link: http://projects.seeu.edu.mk/mlearn. The investigation also tested the correlation between the two mobile learning indicators: electronic content and attention, based on the Task Based learning instructional method. The mobile software solution ''M-Learn“ was developed as a prototype for testing the approach and developing a strategy for designing usable m-learning environment. The proposed methodology is about what learning modeling approach is more appropriate to use when developing mobile learning software.
Keywords: M-learning, mobile software development, mobiledevices, learning instructions, task based learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643784 Operational risks Classification for Information Systems with Service-Oriented Architecture (Including Loss Calculation Example)
Authors: Irina Pyrlina
Abstract:
This article presents the results of a study conducted to identify operational risks for information systems (IS) with service-oriented architecture (SOA). Analysis of current approaches to risk and system error classifications revealed that the system error classes were never used for SOA risk estimation. Additionally system error classes are not normallyexperimentally supported with realenterprise error data. Through the study several categories of various existing error classifications systems are applied and three new error categories with sub-categories are identified. As a part of operational risks a new error classification scheme is proposed for SOA applications. It is based on errors of real information systems which are service providers for application with service-oriented architecture. The proposed classification approach has been used to classify SOA system errors for two different enterprises (oil and gas industry, metal and mining industry). In addition we have conducted a research to identify possible losses from operational risks.
Keywords: Enterprise architecture, Error classification, Oil&Gas and Metal&Mining industries, Operational risks, Serviceoriented architecture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604783 Actionable Rules: Issues and New Directions
Authors: Harleen Kaur
Abstract:
Knowledge Discovery in Databases (KDD) is the process of extracting previously unknown, hidden and interesting patterns from a huge amount of data stored in databases. Data mining is a stage of the KDD process that aims at selecting and applying a particular data mining algorithm to extract an interesting and useful knowledge. It is highly expected that data mining methods will find interesting patterns according to some measures, from databases. It is of vital importance to define good measures of interestingness that would allow the system to discover only the useful patterns. Measures of interestingness are divided into objective and subjective measures. Objective measures are those that depend only on the structure of a pattern and which can be quantified by using statistical methods. While, subjective measures depend only on the subjectivity and understandability of the user who examine the patterns. These subjective measures are further divided into actionable, unexpected and novel. The key issues that faces data mining community is how to make actions on the basis of discovered knowledge. For a pattern to be actionable, the user subjectivity is captured by providing his/her background knowledge about domain. Here, we consider the actionability of the discovered knowledge as a measure of interestingness and raise important issues which need to be addressed to discover actionable knowledge.
Keywords: Data Mining Community, Knowledge Discovery inDatabases (KDD), Interestingness, Subjective Measures, Actionability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942782 Bond Graph and Bayesian Networks for Reliable Diagnosis
Authors: Abdelaziz Zaidi, Belkacem Ould Bouamama, Moncef Tagina
Abstract:
Bond Graph as a unified multidisciplinary tool is widely used not only for dynamic modelling but also for Fault Detection and Isolation because of its structural and causal proprieties. A binary Fault Signature Matrix is systematically generated but to make the final binary decision is not always feasible because of the problems revealed by such method. The purpose of this paper is introducing a methodology for the improvement of the classical binary method of decision-making, so that the unknown and identical failure signatures can be treated to improve the robustness. This approach consists of associating the evaluated residuals and the components reliability data to build a Hybrid Bayesian Network. This network is used in two distinct inference procedures: one for the continuous part and the other for the discrete part. The continuous nodes of the network are the prior probabilities of the components failures, which are used by the inference procedure on the discrete part to compute the posterior probabilities of the failures. The developed methodology is applied to a real steam generator pilot process.Keywords: Redundancy relations, decision-making, Bond Graph, reliability, Bayesian Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525781 Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements
Authors: R. Bremananth
Abstract:
Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.Keywords: Automatic classification, contrast, homogeneity, invariant analysis, multi-scene analysis, overlapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120780 New Nonlinear Filtering Strategies for Eliminating Short and Long Tailed Noise in Images with Edge Preservation Properties
Authors: E. Srinivasan, D. Ebenezer
Abstract:
Midpoint filter is quite effective in recovering the images confounded by the short-tailed (uniform) noise. It, however, performs poorly in the presence of additive long-tailed (impulse) noise and it does not preserve the edge structures of the image signals. Median smoother discards outliers (impulses) effectively, but it fails to provide adequate smoothing for images corrupted with nonimpulse noise. In this paper, two nonlinear techniques for image filtering, namely, New Filter I and New Filter II are proposed based on a nonlinear high-pass filter algorithm. New Filter I is constructed using a midpoint filter, a highpass filter and a combiner. It suppresses uniform noise quite well. New Filter II is configured using an alpha trimmed midpoint filter, a median smoother of window size 3x3, the high pass filter and the combiner. It is robust against impulse noise and attenuates uniform noise satisfactorily. Both the filters are shown to exhibit good response at the image boundaries (edges). The proposed filters are evaluated for their performance on a test image and the results obtained are included.Keywords: Image filters, Midpoint filter, Nonlinear filters, Nonlinear highpass filter, Order-statistic filters, Rank-order filters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450779 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: Building system, time series, diagnosis, outliers, delay, data gap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903778 The Grey Relational Analysis of the Influence Factors of Profit in Cartoon-s Character Merchandising Rights
Abstract:
This paper constructs a four factors theoretical model of Chinese small and medium enterprises based on the “cartoon characters- reputation - enterprise marketing and management capabilities – protection of the cartoon image - institutional environment" by literature research, case studies and investigation. The empirical study show that the greatest impact on current merchandising rights income is the institutional environment friendliness, followed by marketing and management capabilities, input of character image protection and Cartoon characters- reputation through the real-time grey relational analysis, and the greatest impact on post-merchandising rights profit is Cartoon characters reputation, followed by the institutional environment friendliness, then marketing and management ability and input of character image protection through the time-delay grey relational analysis.
Keywords: Cartoon characters, merchandising rights, influencefactors, grey relational analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596777 Platform-as-a-Service Sticky Policies for Privacy Classification in the Cloud
Authors: Maha Shamseddine, Amjad Nusayr, Wassim Itani
Abstract:
In this paper, we present a Platform-as-a-Service (PaaS) model for controlling the privacy enforcement mechanisms applied on user data when stored and processed in Cloud data centers. The proposed architecture consists of establishing user configurable ‘sticky’ policies on the Graphical User Interface (GUI) data-bound components during the application development phase to specify the details of privacy enforcement on the contents of these components. Various privacy classification classes on the data components are formally defined to give the user full control on the degree and scope of privacy enforcement including the type of execution containers to process the data in the Cloud. This not only enhances the privacy-awareness of the developed Cloud services, but also results in major savings in performance and energy efficiency due to the fact that the privacy mechanisms are solely applied on sensitive data units and not on all the user content. The proposed design is implemented in a real PaaS cloud computing environment on the Microsoft Azure platform.Keywords: Privacy enforcement, Platform-as-a-Service privacy awareness, cloud computing privacy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759776 Wavelet Enhanced CCA for Minimization of Ocular and Muscle Artifacts in EEG
Authors: B. S. Raghavendra, D. Narayana Dutt
Abstract:
Electroencephalogram (EEG) recordings are often contaminated with ocular and muscle artifacts. In this paper, the canonical correlation analysis (CCA) is used as blind source separation (BSS) technique (BSS-CCA) to decompose the artifact contaminated EEG into component signals. We combine the BSSCCA technique with wavelet filtering approach for minimizing both ocular and muscle artifacts simultaneously, and refer the proposed method as wavelet enhanced BSS-CCA. In this approach, after careful visual inspection, the muscle artifact components are discarded and ocular artifact components are subjected to wavelet filtering to retain high frequency cerebral information, and then clean EEG is reconstructed. The performance of the proposed wavelet enhanced BSS-CCA method is tested on real EEG recordings contaminated with ocular and muscle artifacts, for which power spectral density is used as a quantitative measure. Our results suggest that the proposed hybrid approach minimizes ocular and muscle artifacts effectively, minimally affecting underlying cerebral activity in EEG recordings.Keywords: Blind source separation, Canonical correlationanalysis, Electroencephalogram, Muscle artifact, Ocular artifact, Power spectrum, Wavelet threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334775 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969774 Designing of Multi-Agent Rescue Robot: Development and Basic Experiments of Master-Slave Type Rescue Robots
Authors: J. Lin, T. C. Kuo, C. -Y. Gau, K. C. Liu, Y. J. Huang, J. D. Yu, Y. W. Lin
Abstract:
A multi-agent type robot for disaster response in calamity scene is proposed in this paper. The proposed grouped rescue robots can perform cooperative reconnaissance and surveillance to achieve a given rescue mission. The multi-agent rescue of dual set robot consists of one master set and three slave units. The research for this rescue robot system is going to detect at harmful environment where human is unreachable, such as the building is infected with virus or the factory has hazardous liquid in effluent. As a dual set robot, with Bluetooth and communication network, the master set can connect with slave units and send information back to computer by wireless and monitor. Therefore, rescuer can be informed the real-time information in a calamity area. Furthermore, each slave robot is able to obstacle avoidance by ultrasonic sensors, and encodes distance and location by compass. The master robot can integrate every devices information to increase the efficiency of prospected and research unknown area.
Keywords: Designing of multi-agent rescue robot, development and basic experiments of master-slave type rescue robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553773 A Functional Thermochemical Energy Storage System for Mobile Applications: Design and Performance Analysis
Authors: Jure Galović, Peter Hofmann
Abstract:
Thermochemical energy storage (TCES), as a long-term and lossless energy storage principle, provides a contribution for the reduction of greenhouse emissions of mobile applications, such as passenger vehicles with an internal combustion engine. A prototype of a TCES system, based on reversible sorption reactions of LiBr composite and methanol has been designed at Vienna University of Technology. In this paper, the selection of reactive and inert carrier materials as well as the design of heat exchangers (reactor vessel and evapo-condenser) was reviewed and the cycle stability under real operating conditions was investigated. The performance of the developed system strongly depends on the environmental temperatures, to which the reactor vessel and evapo-condenser are exposed during the phases of thermal conversion. For an integration of the system into mobile applications, the functionality of the designed prototype was proved in numerous conducted cycles whereby no adverse reactions were observed.
Keywords: Mobile applications, LiBr composite, methanol, performance of TCES system, sorption process, thermochemical energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975772 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.
Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422