Search results for: hierarchical regression analysis
8781 Design and Implementation of a Neural Network for Real-Time Object Tracking
Authors: Javed Ahmed, M. N. Jafri, J. Ahmad, Muhammad I. Khan
Abstract:
Real-time object tracking is a problem which involves extraction of critical information from complex and uncertain imagedata. In this paper, we present a comprehensive methodology to design an artificial neural network (ANN) for a real-time object tracking application. The object, which is tracked for the purpose of demonstration, is a specific airplane. However, the proposed ANN can be trained to track any other object of interest. The ANN has been simulated and tested on the training and testing datasets, as well as on a real-time streaming video. The tracking error is analyzed with post-regression analysis tool, which finds the correlation among the calculated coordinates and the correct coordinates of the object in the image. The encouraging results from the computer simulation and analysis show that the proposed ANN architecture is a good candidate solution to a real-time object tracking problem.
Keywords: Image processing, machine vision, neural networks, real-time object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35098780 How to Win Passengers and Influence Motorists? Lessons Learned from a Comparative Study of Global Transit Systems
Authors: Oliver F. Shyr, Yu-Hsuan Hsiao, David E. Andersson
Abstract:
Due to the call of global warming effects, city planners aim at actions for reducing carbon emission. One of the approaches is to promote the usage of public transportation system toward the transit-oriented-development. For example, rapid transit system in Taipei city and Kaohsiung city are opening. However, until November 2008 the average daily patronage counted only 113,774 passengers at Kaohsiung MRT systems, much less than which was expected. Now the crucial questions: how the public transport competes with private transport? And more importantly, what factors would enhance the use of public transport? To give the answers to those questions, our study first applied regression to analyze the factors attracting people to use public transport around cities in the world. It is shown in our study that the number of MRT stations, city population, cost of living, transit fare, density, gasoline price, and scooter being a major mode of transport are the major factors. Subsequently, our study identified successful and unsuccessful cities in regard of the public transport usage based on the diagnosis of regression residuals. Finally, by comparing transportation strategies adopted by those successful cities, our conclusion stated that Kaohsiung City could apply strategies such as increasing parking fees, reducing parking spaces in downtown area, and reducing transfer time by providing more bus services and public bikes to promote the usage of public transport.
Keywords: Public Transit System, Comparative Study, Transport Demand Management, Regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20918779 The Willingness of Business Students on T Innovative Behavior within the Theory of Planned Behavior
Authors: Mei L. Lin, Pi-Yueh Cheng
Abstract:
Classes on creativity, innovation, and entrepreneurship are becoming quite popular at universities throughout the world. However, it is not easy for business students to get involved to innovative activities, especially patent application. The present study investigated how to enhance business students- intention to participate in innovative activities and which incentives universities should consider. A 22-item research scale was used, and confirmatory factor analysis was conducted to verify its reliability and validity. Multiple regression and discriminant analyses were also conducted. The results demonstrate the effect of growth-need strength on innovative behavior and indicate that the theory of planned behavior can explain and predict business students- intention to participate in innovative activities. Additionally, the results suggest that applying our proposed model in practice would effectively strengthen business students- intentions to engage in innovative activities.Keywords: discriminant analysis, growth need strength, innovative behavior, TPB model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15608778 Knowledge and Organisational Success: Developing a Scale of Knowledge Framework
Authors: Mohammed Almohammedali, Peter Duncan, David Edgar
Abstract:
The aim of this exploratory research is to understand further how organisations can evaluate their activities, which generate knowledge creation, to meet changing stakeholder expectations. A Scale of Knowledge (SoK) Framework is proposed which links knowledge management and organisational activities to changing stakeholder expectations. The framework was informed by the knowledge management literature, as well as empirical work conducted via a single case study of a multi-site hospital organisation in Saudi Arabia. Eight in-depth semi-structured interviews were conducted with managers from across the organisation regarding current and future stakeholder expectations, organisational strategy/activities and knowledge management. Data were analysed using thematic analysis and a hierarchical value map technique to identify activities that can produce further knowledge and consequently impact on how stakeholder expectations are met. The SoK Framework developed may be useful to practitioners as an analytical aid to determine if current organisational activities produce organisational knowledge which helps them meet (increasingly higher levels of) stakeholder expectations. The limitations of the research and avenues for future development of the proposed framework are discussed.Keywords: Knowledge creation, knowledge management, organisational knowledge, scale of knowledge, knowledge impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16998777 Aircraft Gas Turbine Engines Technical Condition Identification System
Authors: A. M. Pashayev, C. Ardil, D. D. Askerov, R. A. Sadiqov, P. S. Abdullayev
Abstract:
In this paper is shown that the probability-statistic methods application, especially at the early stage of the aviation gas turbine engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence is considered the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods. Training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus for GTE technical condition more adequate model making are analysed dynamics of skewness and kurtosis coefficients' changes. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows to draw conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. For checking of models adequacy is considered the Fuzzy Multiple Correlation Coefficient of Fuzzy Multiple Regression. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-bystage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine temperature condition was made.
Keywords: Gas turbine engines, neural networks, fuzzy logic, fuzzy statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19048776 New Approach for Load Modeling
Authors: S. Chokri
Abstract:
Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.
Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21988775 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.
Keywords: Land cover change, land surface temperature, normalized difference vegetation index, urban heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14588774 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies
Authors: Harshit Vallecha, Prabha Bhola
Abstract:
‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.
Keywords: Climate change, decentralized generation, electricity access, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10058773 Big Five Traits and Loneliness among Turkish Emerging Adults
Authors: Hasan Atak
Abstract:
Emerging adulthood, between the ages of 18 and 25, as a distinct developmental stage extending from adolescence to young adulthood. The proportions composing the five-factor model are neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness. In the literature, there is any study which includes the relationship between emerging adults loneliness and personality traits. Therefore, the relationship between emerging adults loneliness and personality traits have to be investigated. This study examines the association between the Big Five personality traits, and loneliness among Turkish emerging adults. A total of 220 emerging adults completed the NEO Five Factor Inventory (NEO-FFI), and the The UCLA Loneliness Scale (UCLALS). Correlation analysis showed that three Big Five personality dimensions which are Neuroticism (positively), and Extraversion and Aggreableness (negatively) are moderately correlated with emerging adults loneliness. Regression analysis shows that Extraversion, Aggreableness and Neuroticism are the most important predictors of emerging adults loneliness. Results can be discussed in the context of emerging adulthood theory.
Keywords: Personality, Big Five Traits, Loneliness, Turkish Emerging Adults
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28138772 Influence of Drought on Yield and Yield Components in White Bean
Authors: Gholamreza Habibi
Abstract:
In order to study seed yield and seed yield components in bean under reduced irrigation condition and assessment drought tolerance of genotypes, 15 lines of White beans were evaluated in two separate RCB design with 3 replications under stress and non stress conditions. Analysis of variance showed that there were significant differences among varieties in terms of traits under study, indicating the existence of genetic variation among varieties. The results indicate that drought stress reduced seed yield, number of seed per plant, biological yield and number of pod in White been. In non stress condition, yield was highly correlated with the biological yield, whereas in stress condition it was highly correlated with harvest index. Results of stepwise regression showed that, selection can we done based on, biological yield, harvest index, number of seed per pod, seed length, 100 seed weight. Result of path analysis showed that the highest direct effect, being positive, was related to biological yield in non stress and to harvest index in stress conditions. Factor analysis were accomplished in stress and nonstress condition a, there were 4 factors that explained more than 76 percent of total variations. We used several selection indices such as Stress Susceptibility Index ( SSI ), Geometric Mean Productivity ( GMP ), Mean Productivity ( MP ), Stress Tolerance Index ( STI ) and Tolerance Index ( TOL ) to study drought tolerance of genotypes, we found that the best Stress Index for selection tolerance genotypes were STI, GMP and MP were the greatest correlations between these Indices and seed yield under stress and non stress conditions. In classification of genotypes base on phenotypic characteristics, using cluster analysis ( UPGMA ), all allels classified in 5 separate groups in stress and non stress conditions.Keywords: Cluster analysis, factor analysis, path analysis, selection index, White bean
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21408771 Extreme Rainfall Frequency Analysis for Meteorological Sub-Division 4 of India Using L-Moments
Authors: Th. Arti Devi, Parthasarthi Choudhury
Abstract:
Extreme rainfall frequency analysis for Meteorological Sub-Division 4 of India was analyzed using L-moments approach. Serial Correlation and Mann Kendall tests were conducted for checking serially independent and stationarity of the observations. The discordancy measure for the sites was conducted to detect the discordant sites. The regional homogeneity was tested by comparing with 500 generated homogeneous regions using a 4 parameter Kappa distribution. The best fit distribution was selected based on ZDIST statistics and L-moments ratio diagram from the five extreme value distributions GPD, GLO, GEV, P3 and LP3. The LN3 distribution was selected and regional rainfall frequency relationship was established using index-rainfall procedure. A regional mean rainfall relationship was developed using multiple linear regression with latitude and longitude of the sites as variables.
Keywords: L-moments, ZDIST statistics, Serial correlation, Mann Kendall test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24638770 Statistical Models of Network Traffic
Authors: Barath Kumar, Oliver Niggemann, Juergen Jasperneite
Abstract:
Model-based approaches have been applied successfully to a wide range of tasks such as specification, simulation, testing, and diagnosis. But one bottleneck often prevents the introduction of these ideas: Manual modeling is a non-trivial, time-consuming task. Automatically deriving models by observing and analyzing running systems is one possible way to amend this bottleneck. To derive a model automatically, some a-priori knowledge about the model structure–i.e. about the system–must exist. Such a model formalism would be used as follows: (i) By observing the network traffic, a model of the long-term system behavior could be generated automatically, (ii) Test vectors can be generated from the model, (iii) While the system is running, the model could be used to diagnose non-normal system behavior. The main contribution of this paper is the introduction of a model formalism called 'probabilistic regression automaton' suitable for the tasks mentioned above.Keywords: Model-based approach, Probabilistic regression automata, Statistical models and Timed automata.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15408769 How Team Efficacy Beliefs Impact Project Performance: An Empirical Investigation of Team Potency in Capital Projects in the Process Industries
Authors: C. Scott-Young, D. Samson
Abstract:
Team efficacy beliefs show promise in enhancing team performance. Using a model-based quantitative research design, we investigated the antecedents and performance consequences of generalized team efficacy (potency) in a sample of 56 capital projects executed by 15 Fortune 500 companies in the process industries. Empirical analysis of our field survey identified that generalized team efficacy beliefs were positively associated with an objective measure of project cost performance. Regression analysis revealed that team competence, empowering leadership, and performance feedback all predicted generalized team efficacy beliefs. Tests of mediation revealed that generalized team efficacy fully mediated between these three inputs and project cost performance.Keywords: Team efficacy, Potency, Leadership, Feedback, Project cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21658768 Application of Feed-Forward Neural Networks Autoregressive Models with Genetic Algorithm in Gross Domestic Product Prediction
Authors: E. Giovanis
Abstract:
In this paper we present a Feed-Foward Neural Networks Autoregressive (FFNN-AR) model with genetic algorithms training optimization in order to predict the gross domestic product growth of six countries. Specifically we propose a kind of weighted regression, which can be used for econometric purposes, where the initial inputs are multiplied by the neural networks final optimum weights from input-hidden layer of the training process. The forecasts are compared with those of the ordinary autoregressive model and we conclude that the proposed regression-s forecasting results outperform significant those of autoregressive model. Moreover this technique can be used in Autoregressive-Moving Average models, with and without exogenous inputs, as also the training process with genetics algorithms optimization can be replaced by the error back-propagation algorithm.Keywords: Autoregressive model, Feed-Forward neuralnetworks, Genetic Algorithms, Gross Domestic Product
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16728767 Banks Profitability Indicators in CEE Countries
Abstract:
The aim of the present article is to determine the impact of the external and internal factors of bank performance on the profitability indicators of the CEE countries banks in the period from 2006 to 2012. On the basis of research conducted abroad on bank and macroeconomic profitability indicators, in order to obtain research results, the authors evaluated return on average assets (ROAA) and return on average equity (ROAE) indicators of the CEE countries banks. The authors analyzed profitability indicators of banks using descriptive methods, SPSS data analysis methods, as well as data correlation and linear regression analysis. The authors concluded that most internal and external indicators of bank performance have no direct influence the profitability of the banks in the CEE countries. The only exceptions are credit risk and bank size, which affect one of the measures of bank profitability – return on average equity.
Keywords: Banks, CEE countries, Profitability ROAA, ROAE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26628766 A Holistic Approach for Technical Product Optimization
Authors: H. Lang, M. Bader, A. Buchroithner
Abstract:
Holistic methods covering the development process as a whole – e.g. systems engineering – have established themselves in product design. However, technical product optimization, representing improvements in efficiency and/or minimization of loss, usually applies to single components of a system. A holistic approach is being defined based on a hierarchical point of view of systems engineering. This is subsequently presented using the example of an electromechanical flywheel energy storage system for automotive applications.Keywords: Design, product development, product optimization, systems engineering, flywheel energy storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26528765 Estimating Reaction Rate Constants with Neural Networks
Authors: Benedek Kovacs, Janos Toth
Abstract:
Solutions are proposed for the central problem of estimating the reaction rate coefficients in homogeneous kinetics. The first is based upon the fact that the right hand side of a kinetic differential equation is linear in the rate constants, whereas the second one uses the technique of neural networks. This second one is discussed deeply and its advantages, disadvantages and conditions of applicability are analyzed in the mirror of the first one. Numerical analysis carried out on practical models using simulated data, and our programs written in Mathematica.
Keywords: Neural networks, parameter estimation, linear regression, kinetic models, reaction rate coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19978764 The Analysis of the Impact of Urbanization on Urban Meteorology from Urban Growth Management Perspective
Authors: Hansung Wan, Hyungkwan Cho, Kiho Sung, Hongkyu Kim
Abstract:
The amount of urban artificial heat which affects the urban temperature rise in urban meteorology was investigated in order to clarify the relationships between urbanization and urban meteorology in this study. The results of calculation to identify how urban temperate was increased through the establishment of a model for measuring the amount of urban artificial heat and theoretical testing revealed that the amount of urban artificial heat increased urban temperature by plus or minus 0.23 ˚ C in 2007 compared with 1996, statistical methods (correlation and regression analysis) to clarify the relationships between urbanization and urban weather were as follows. New design techniques and urban growth management are necessary from urban growth management point of view suggested from this research at city design phase to decrease urban temperature rise and urban torrential rain which can produce urban disaster in terms of urban meteorology by urbanization.Keywords: The amount of urban artificial heat, Urban growth management, Urbanization, Urban meteorology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15938763 Crash Severity Modeling in Urban Highways Using Backward Regression Method
Authors: F. Rezaie Moghaddam, T. Rezaie Moghaddam, M. Pasbani Khiavi, M. Ali Ghorbani
Abstract:
Identifying and classifying intersections according to severity is very important for implementation of safety related counter measures and effective models are needed to compare and assess the severity. Highway safety organizations have considered intersection safety among their priorities. In spite of significant advances in highways safety, the large numbers of crashes with high severities still occur in the highways. Investigation of influential factors on crashes enables engineers to carry out calculations in order to reduce crash severity. Previous studies lacked a model capable of simultaneous illustration of the influence of human factors, road, vehicle, weather conditions and traffic features including traffic volume and flow speed on the crash severity. Thus, this paper is aimed at developing the models to illustrate the simultaneous influence of these variables on the crash severity in urban highways. The models represented in this study have been developed using binary Logit Models. SPSS software has been used to calibrate the models. It must be mentioned that backward regression method in SPSS was used to identify the significant variables in the model. Consider to obtained results it can be concluded that the main factor in increasing of crash severity in urban highways are driver age, movement with reverse gear, technical defect of the vehicle, vehicle collision with motorcycle and bicycle, bridge, frontal impact collisions, frontal-lateral collisions and multi-vehicle crashes in urban highways which always increase the crash severity in urban highways.Keywords: Backward regression, crash severity, speed, urbanhighways.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19218762 Least Squares Method Identification of Corona Current-Voltage Characteristics and Electromagnetic Field in Electrostatic Precipitator
Authors: H. Nouri, I. E. Achouri, A. Grimes, H. Ait Said, M. Aissou, Y. Zebboudj
Abstract:
This paper aims to analysis the behavior of DC corona discharge in wire-to-plate electrostatic precipitators (ESP). Currentvoltage curves are particularly analyzed. Experimental results show that discharge current is strongly affected by the applied voltage. The proposed method of current identification is to use the method of least squares. Least squares problems that of into two categories: linear or ordinary least squares and non-linear least squares, depending on whether or not the residuals are linear in all unknowns. The linear least-squares problem occurs in statistical regression analysis; it has a closed-form solution. A closed-form solution (or closed form expression) is any formula that can be evaluated in a finite number of standard operations. The non-linear problem has no closed-form solution and is usually solved by iterative.Keywords: Electrostatic precipitator, current-voltage characteristics, Least Squares method, electric field, magnetic field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20978761 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14618760 Determination of the Bank's Customer Risk Profile: Data Mining Applications
Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge
Abstract:
In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.
Keywords: Client classification, loan suitability, risk rating, CART analysis, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10758759 Morpho-Phonological Modelling in Natural Language Processing
Authors: Eleni Galiotou, Angela Ralli
Abstract:
In this paper we propose a computational model for the representation and processing of morpho-phonological phenomena in a natural language, like Modern Greek. We aim at a unified treatment of inflection, compounding, and word-internal phonological changes, in a model that is used for both analysis and generation. After discussing certain difficulties cuase by well-known finitestate approaches, such as Koskenniemi-s two-level model [7] when applied to a computational treatment of compounding, we argue that a morphology-based model provides a more adequate account of word-internal phenomena. Contrary to the finite state approaches that cannot handle hierarchical word constituency in a satisfactory way, we propose a unification-based word grammar, as the nucleus of our strategy, which takes into consideration word representations that are based on affixation and [stem stem] or [stem word] compounds. In our formalism, feature-passing operations are formulated with the use of the unification device, and phonological rules modeling the correspondence between lexical and surface forms apply at morpheme boundaries. In the paper, examples from Modern Greek illustrate our approach. Morpheme structures, stress, and morphologically conditioned phoneme changes are analyzed and generated in a principled way.
Keywords: Morpho-Phonology, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21308758 A Cost Optimization Model for the Construction of Bored Piles
Authors: Kenneth M. Oba
Abstract:
Adequate management, control, and optimization of cost is an essential element for a successful construction project. A multiple linear regression optimization model was formulated to address the problem of costs associated with pile construction operations. A total of 32 PVC-reinforced concrete piles with diameter of 300 mm, 5.4 m long, were studied during the construction. The soil upon which the piles were installed was mostly silty sand, and completely submerged in water at Bonny, Nigeria. The piles are friction piles installed by boring method, using a piling auger. The volumes of soil removed, the weight of reinforcement cage installed, and volumes of fresh concrete poured into the PVC void were determined. The cost of constructing each pile based on the calculated quantities was determined. A model was derived and subjected to statistical tests using Statistical Package for the Social Sciences (SPSS) software. The model turned out to be adequate, fit, and have a high predictive accuracy with an R2 value of 0.833.
Keywords: Cost optimization modelling, multiple linear models, pile construction, regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788757 Comparative Study of the Effects of Process Parameters on the Yield of Oil from Melon Seed (Cococynthis citrullus) and Coconut Fruit (Cocos nucifera)
Authors: Ndidi F. Amulu, Patrick E. Amulu, Gordian O. Mbah, Callistus N. Ude
Abstract:
Comparative analysis of the properties of melon seed, coconut fruit and their oil yield were evaluated in this work using standard analytical technique AOAC. The results of the analysis carried out revealed that the moisture contents of the samples studied are 11.15% (melon) and 7.59% (coconut). The crude lipid content are 46.10% (melon) and 55.15% (coconut).The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant difference (p < 0.05) in yield between the samples, with melon oil seed flour having a higher percentage range of oil yield (41.30 – 52.90%) and coconut (36.25 – 49.83%). The physical characterization of the extracted oil was also carried out. The values gotten for refractive index are 1.487 (melon seed oil) and 1.361 (coconut oil) and viscosities are 0.008 (melon seed oil) and 0.002 (coconut oil). The chemical analysis of the extracted oils shows acid value of 1.00mg NaOH/g oil (melon oil), 10.050mg NaOH/g oil (coconut oil) and saponification value of 187.00mg/KOH (melon oil) and 183.26mg/KOH (coconut oil). The iodine value of the melon oil gave 75.00mg I2/g and 81.00mg I2/g for coconut oil. A standard statistical package Minitab version 16.0 was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to optimize the leaching process. Both samples gave high oil yield at the same optimal conditions. The optimal conditions to obtain highest oil yield ≥ 52% (melon seed) and ≥ 48% (coconut seed) are solute - solvent ratio of 40g/ml, leaching time of 2hours and leaching temperature of 50oC. The two samples studied have potential of yielding oil with melon seed giving the higher yield.Keywords: Coconut, melon, optimization, processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21538756 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19978755 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok
Authors: Teerada Apibunyopas, Nithinant Thammakoranonta
Abstract:
Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees’ skill efficiently. This study is focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increasing. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.
Keywords: e-Learning, Job Satisfaction, Learning and growth.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23868754 Immobilization of Lipase Enzyme by Low Cost Material: A Statistical Approach
Authors: Md. Z. Alam, Devi R. Asih, Md. N. Salleh
Abstract:
Immobilization of lipase enzyme produced from palm oil mill effluent (POME) by the activated carbon (AC) among the low cost support materials was optimized. The results indicated that immobilization of 94% was achieved by AC as the most suitable support material. A sequential optimization strategy based on a statistical experimental design, including one-factor-at-a-time (OFAT) method was used to determine the equilibrium time. Three components influencing lipase immobilization were optimized by the response surface methodology (RSM) based on the face-centered central composite design (FCCCD). On the statistical analysis of the results, the optimum enzyme concentration loading, agitation rate and carbon active dosage were found to be 30 U/ml, 300 rpm and 8 g/L respectively, with a maximum immobilization activity of 3732.9 U/g-AC after 2 hrs of immobilization. Analysis of variance (ANOVA) showed a high regression coefficient (R2) of 0.999, which indicated a satisfactory fit of the model with the experimental data. The parameters were statistically significant at p<0.05.
Keywords: Activated carbon, adsorption, immobilization, POME based lipase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25758753 A Study of Visitors, on Destination Image, Environmental Perception, Travel Experiences and Revisiting Willingness in Xinshe Leisure Agriculture Park
Abstract:
The main purpose of this study is to analyze the relationship of leisure agriculture park visitors on tourist destination image, environmental perception, travel experiences and revisiting willingness. This study used questionnaires to Xinshe leisure agriculture park visitors- targeted convenience sampling manner total of 636 valid questionnaires. Valid questionnaires by descriptive statistics, correlation analysis and multiple regression analysis, the study found that: 1. The agricultural park visitors- correlations exist between the destination image, perception of the environment, tourism experience and revisiting willingness. 2."Excellent facilities and services", "space atmosphere comfortable" and "the spacious paternity outdoor space" imagery, of visitors- "revisiting willingness predict. 3. Visitors- in leisure agriculture park "environmental perception" and "travel experience, future revisiting willingness predict. According to the analysis of the results, the study not only operate on the recommendations of the leisure farm owners also provide follow-up study direction for future researchers.Keywords: Leisure farms, image, travel experience, revisiting willingness, environmental perception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25248752 Conceptual Method for Flexible Business Process Modeling
Authors: Adla Bentellis, Zizette Boufaïda
Abstract:
Nowadays, the pace of business change is such that, increasingly, new functionality has to be realized and reliably installed in a matter of days, or even hours. Consequently, more and more business processes are prone to a continuous change. The objective of the research in progress is to use the MAP model, in a conceptual modeling method for flexible and adaptive business process. This method can be used to capture the flexibility dimensions of a business process; it takes inspiration from modularity concept in the object oriented paradigm to establish a hierarchical construction of the BP modeling. Its intent is to provide a flexible modeling that allows companies to quickly adapt their business processes.Keywords: Business Process, Business process modeling, flexibility, MAP Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898