Search results for: graphical decision models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3976

Search results for: graphical decision models

3556 Modelling of the Fire Pragmatism in the Area of Military Management and Its Experimental Verification

Authors: Ivana Mokrá

Abstract:

The article deals with modelling of the fire pragmatism in the area of military management and its experimental verification. Potential approaches are based on the synergy of mathematical and theoretical ideas, operational and tactical requirements and the military decision-making process. This issue has taken on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophical point of view, these new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.

Keywords: Military management, decision-making process, strike modeling, experimental evaluation, pragmatism, tactical strike modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
3555 An Owl Ontology for Commonkads Template Knowledge Models

Authors: B. A. Gobin, R. K. Subramanian

Abstract:

This paper gives an overview of how an OWL ontology has been created to represent template knowledge models defined in CML that are provided by CommonKADS. CommonKADS is a mature knowledge engineering methodology which proposes the use of template knowledge model for knowledge modelling. The aim of developing this ontology is to present the template knowledge model in a knowledge representation language that can be easily understood and shared in the knowledge engineering community. Hence OWL is used as it has become a standard for ontology and also it already has user friendly tools for viewing and editing.

Keywords: Ontology, OWL, Template Knowledge Models, CommonKADS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
3554 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel

Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi

Abstract:

The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.

Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
3553 Modeling of Normal and Atherosclerotic Blood Vessels using Finite Element Methods and Artificial Neural Networks

Authors: K. Kamalanand, S. Srinivasan

Abstract:

Analysis of blood vessel mechanics in normal and diseased conditions is essential for disease research, medical device design and treatment planning. In this work, 3D finite element models of normal vessel and atherosclerotic vessel with 50% plaque deposition were developed. The developed models were meshed using finite number of tetrahedral elements. The developed models were simulated using actual blood pressure signals. Based on the transient analysis performed on the developed models, the parameters such as total displacement, strain energy density and entropy per unit volume were obtained. Further, the obtained parameters were used to develop artificial neural network models for analyzing normal and atherosclerotic blood vessels. In this paper, the objectives of the study, methodology and significant observations are presented.

Keywords: Blood vessel, atherosclerosis, finite element model, artificial neural networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2308
3552 A Hybrid Classification Method using Artificial Neural Network Based Decision Tree for Automatic Sleep Scoring

Authors: Haoyu Ma, Bin Hu, Mike Jackson, Jingzhi Yan, Wen Zhao

Abstract:

In this paper we propose a new classification method for automatic sleep scoring using an artificial neural network based decision tree. It attempts to treat sleep scoring progress as a series of two-class problems and solves them with a decision tree made up of a group of neural network classifiers, each of which uses a special feature set and is aimed at only one specific sleep stage in order to maximize the classification effect. A single electroencephalogram (EEG) signal is used for our analysis rather than depending on multiple biological signals, which makes greatly simplifies the data acquisition process. Experimental results demonstrate that the average epoch by epoch agreement between the visual and the proposed method in separating 30s wakefulness+S1, REM, S2 and SWS epochs was 88.83%. This study shows that the proposed method performed well in all the four stages, and can effectively limit error propagation at the same time. It could, therefore, be an efficient method for automatic sleep scoring. Additionally, since it requires only a small volume of data it could be suited to pervasive applications.

Keywords: Sleep, Sleep stage, Automatic sleep scoring, Electroencephalography, Decision tree, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2072
3551 Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method

Authors: C. Ardil

Abstract:

In this paper, the comparison of composite programming and compromise programming for the aircraft selection problem is discussed using the multiple criteria decision analysis method. The decision making process requires the prior definition and fulfillment of certain factors, especially when it comes to complex areas such as aircraft selection problems. The proposed technique gives more efficient results by extending the composite programming and compromise programming, which are widely used in modeling multiple criteria decisions. The proposed model is applied to a practical decision problem for evaluating and selecting aircraft problems.A selection of aircraft was made based on the proposed approach developed in the field of multiple criteria decision making. The model presented is solved by using the following methods: composite programming, and compromise programming. The importance values of the weight coefficients of the criteria are calculated using the mean weight method. The evaluation and ranking of aircraft are carried out using the composite programming and compromise programming methods. In order to determine the stability of the model and the ability to apply the developed composite programming and compromise programming approach, the paper analyzes its sensitivity, which involves changing the value of the coefficient λ and q in the first part. The second part of the sensitivity analysis relates to the application of different multiple criteria decision making methods, composite programming and compromise programming. In addition, in the third part of the sensitivity analysis, the Spearman correlation coefficient of the ranks obtained was calculated which confirms the applicability of all the proposed approaches.

Keywords: composite programming, compromise programming, additive weighted model, multiplicative weighted model, multiple criteria decision making analysis, MCDMA, aircraft selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
3550 Interoperability in Component Based Software Development

Authors: M. Madiajagan, B. Vijayakumar

Abstract:

The ability of information systems to operate in conjunction with each other encompassing communication protocols, hardware, software, application, and data compatibility layers. There has been considerable work in industry on the development of component interoperability models, such as CORBA, (D)COM and JavaBeans. These models are intended to reduce the complexity of software development and to facilitate reuse of off-the-shelf components. The focus of these models is syntactic interface specification, component packaging, inter-component communications, and bindings to a runtime environment. What these models lack is a consideration of architectural concerns – specifying systems of communicating components, explicitly representing loci of component interaction, and exploiting architectural styles that provide well-understood global design solutions. The development of complex business applications is now focused on an assembly of components available on a local area network or on the net. These components must be localized and identified in terms of available services and communication protocol before any request. The first part of the article introduces the base concepts of components and middleware while the following sections describe the different up-todate models of communication and interaction and the last section shows how different models can communicate among themselves.

Keywords: Interoperability, component packaging, communication technology, heterogeneous platform, component interface, middleware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
3549 A Decision Support Model for Bank Branch Location Selection

Authors: Nihan Cinar

Abstract:

Location selection is one of the most important decision making process which requires to consider several criteria based on the mission and the strategy. This study-s object is to provide a decision support model in order to help the bank selecting the most appropriate location for a bank-s branch considering a case study in Turkey. The object of the bank is to select the most appropriate city for opening a branch among six alternatives in the South-Eastern of Turkey. The model in this study was consisted of five main criteria which are Demographic, Socio-Economic, Sectoral Employment, Banking and Trade Potential and twenty one subcriteria which represent the bank-s mission and strategy. Because of the multi-criteria structure of the problem and the fuzziness in the comparisons of the criteria, fuzzy AHP is used and for the ranking of the alternatives, TOPSIS method is used.

Keywords: MCDM, bank branch location, fuzzy AHP, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4968
3548 The Role of Food Labeling on Consumers’ Buying Decision: Georgian Case

Authors: Nugzar Todua

Abstract:

The paper studies the role of food labeling in order to promote healthy eating issue in Georgia. The main focus of the research is directed to consumer attitudes regarding food labeling. The methodology of the paper is based on the focus group work, as well as online and face to face surveys. The data analysis has been provided through ANOVA. The study proves that the impact of variables such as the interest, awareness, reliability, assurance and satisfaction of consumers' on buying decision, is statistically important. The study reveals that consumers’ perception regarding to food labeling is positive, but their level of knowledge and ability is rather low. It is urgent to strengthen marketing promotions strategies in the process of implementations of food security policy in Georgia.

Keywords: Food labeling, buying decision, Georgian consumers, marketing research.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1062
3547 Constructing a Bayesian Network for Solar Energy in Egypt Using Life Cycle Analysis and Machine Learning Algorithms

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

In an era where machines run and shape our world, the need for a stable, non-ending source of energy emerges. In this study, the focus was on the solar energy in Egypt as a renewable source, the most important factors that could affect the solar energy’s market share throughout its life cycle production were analyzed and filtered, the relationships between them were derived before structuring a Bayesian network. Also, forecasted models were built for multiple factors to predict the states in Egypt by 2035, based on historical data and patterns, to be used as the nodes’ states in the network. 37 factors were found to might have an impact on the use of solar energy and then were deducted to 12 factors that were chosen to be the most effective to the solar energy’s life cycle in Egypt, based on surveying experts and data analysis, some of the factors were found to be recurring in multiple stages. The presented Bayesian network could be used later for scenario and decision analysis of using solar energy in Egypt, as a stable renewable source for generating any type of energy needed.

Keywords: ARIMA, auto correlation, Bayesian network, forecasting models, life cycle, partial correlation, renewable energy, SARIMA, solar energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
3546 Human Pose Estimation using Active Shape Models

Authors: Changhyuk Jang, Keechul Jung

Abstract:

Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.

Keywords: Active shape models, skeleton, pose estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
3545 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.

Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2825
3544 Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method

Authors: C. Ardil

Abstract:

Intuitionistic fuzzy sets (IFS), Pythagorean fuzzy sets (PyFS), Picture fuzzy sets (PFS), q-rung orthopair fuzzy sets (q-ROF), Spherical fuzzy sets (SFS), T-spherical FS, and Neutrosophic sets (NS) are reviewed as multidimensional extensions of fuzzy sets in order to more explicitly and informatively describe the opinions of decision-making experts under uncertainty. To handle operations with standard fuzzy sets (SFS), the necessary operators; weighted arithmetic mean (WAM), weighted geometric mean (WGM), and Minkowski distance function are defined. The algorithm of the proposed proximity measure method (PMM) is provided with a multiple criteria group decision making method (MCDM) for use in a standard fuzzy set environment. To demonstrate the feasibility of the proposed method, the problem of selecting the best drone for an Air Force procurement request is used. The proximity measure method (PMM) based multidimensional standard fuzzy sets (SFS) is introduced to demonstrate its use with an issue involving unmanned combat aircraft selection.

Keywords: standard fuzzy sets (SFS), unmanned combat aircraft selection, multiple criteria decision making (MCDM), proximity measure method (PMM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360
3543 Intrapreneurship Discovery: Standard Strategy to Boost Innovation inside Companies

Authors: Chiara Mansanta, Daniela Sani

Abstract:

This paper studies the concept of intrapreneurship discovery for innovation and technology development related to the manufacturing industries set up in the center of Italy, in Marche Region. The study underlined the key drivers of the innovation process and the main factors that influence innovation. Starting from a literature study on open innovation, this paper examines the role of human capital to support company’s development. The empirical part of the study is based on a survey to 151 manufacturing companies that represent the 34% of that universe at the regional level. The survey underlined the main KPI’s that influence companies in their decision processes; then tools for these decision processes are presented.

Keywords: Business model, decision making, intrapreneurship discovery, open innovation, standard methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
3542 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees

Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel

Abstract:

Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.

Keywords: Cloud storage, decision trees, diagnostic image, search, telemedicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
3541 The Intuitionistic Fuzzy Ordered Weighted Averaging-Weighted Average Operator and its Application in Financial Decision Making

Authors: Shouzhen Zeng

Abstract:

We present a new intuitionistic fuzzy aggregation operator called the intuitionistic fuzzy ordered weighted averaging-weighted average (IFOWAWA) operator. The main advantage of the IFOWAWA operator is that it unifies the OWA operator with the WA in the same formulation considering the degree of importance that each concept has in the aggregation. Moreover, it is able to deal with an uncertain environment that can be assessed with intuitionistic fuzzy numbers. We study some of its main properties and we see that it has a lot of particular cases such as the intuitionistic fuzzy weighted average (IFWA) and the intuitionistic fuzzy OWA (IFOWA) operator. Finally, we study the applicability of the new approach on a financial decision making problem concerning the selection of financial strategies.

Keywords: Intuitionistic fuzzy numbers, Weighted average, OWA operator, Financial decision making

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2442
3540 Catchment Yield Prediction in an Ungauged Basin Using PyTOPKAPI

Authors: B. S. Fatoyinbo, D. Stretch, O. T. Amoo, D. Allopi

Abstract:

This study extends the use of the Drainage Area Regionalization (DAR) method in generating synthetic data and calibrating PyTOPKAPI stream yield for an ungauged basin at a daily time scale. The generation of runoff in determining a river yield has been subjected to various topographic and spatial meteorological variables, which integers form the Catchment Characteristics Model (CCM). Many of the conventional CCM models adapted in Africa have been challenged with a paucity of adequate, relevance and accurate data to parameterize and validate the potential. The purpose of generating synthetic flow is to test a hydrological model, which will not suffer from the impact of very low flows or very high flows, thus allowing to check whether the model is structurally sound enough or not. The employed physically-based, watershed-scale hydrologic model (PyTOPKAPI) was parameterized with GIS-pre-processing parameters and remote sensing hydro-meteorological variables. The validation with mean annual runoff ratio proposes a decent graphical understanding between observed and the simulated discharge. The Nash-Sutcliffe efficiency and coefficient of determination (R²) values of 0.704 and 0.739 proves strong model efficiency. Given the current climate variability impact, water planner can now assert a tool for flow quantification and sustainable planning purposes.

Keywords: Ungauged Basin, Catchment Characteristics Model, Synthetic data, GIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
3539 Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach

Authors: P. Aragonés-Beltrán, F. Chaparro-González, J. P. Pastor Ferrando, M. García-Melón

Abstract:

In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.

Keywords: Multicriteria decision analysis, Analytic Network Process, Photovoltaic solar power projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
3538 Using Business Intelligence Capabilities to Improve the Quality of Decision-Making: A Case Study of Mellat Bank

Authors: Jalal Haghighat Monfared, Zahra Akbari

Abstract:

Today, business executives need to have useful information to make better decisions. Banks have also been using information tools so that they can direct the decision-making process in order to achieve their desired goals by rapidly extracting information from sources with the help of business intelligence. The research seeks to investigate whether there is a relationship between the quality of decision making and the business intelligence capabilities of Mellat Bank. Each of the factors studied is divided into several components, and these and their relationships are measured by a questionnaire. The statistical population of this study consists of all managers and experts of Mellat Bank's General Departments (including 190 people) who use commercial intelligence reports. The sample size of this study was 123 randomly determined by statistical method. In this research, relevant statistical inference has been used for data analysis and hypothesis testing. In the first stage, using the Kolmogorov-Smirnov test, the normalization of the data was investigated and in the next stage, the construct validity of both variables and their resulting indexes were verified using confirmatory factor analysis. Finally, using the structural equation modeling and Pearson's correlation coefficient, the research hypotheses were tested. The results confirmed the existence of a positive relationship between decision quality and business intelligence capabilities in Mellat Bank. Among the various capabilities, including data quality, correlation with other systems, user access, flexibility and risk management support, the flexibility of the business intelligence system was the most correlated with the dependent variable of the present research. This shows that it is necessary for Mellat Bank to pay more attention to choose the required business intelligence systems with high flexibility in terms of the ability to submit custom formatted reports. Subsequently, the quality of data on business intelligence systems showed the strongest relationship with quality of decision making. Therefore, improving the quality of data, including the source of data internally or externally, the type of data in quantitative or qualitative terms, the credibility of the data and perceptions of who uses the business intelligence system, improves the quality of decision making in Mellat Bank.

Keywords: Business intelligence, business intelligence capability, decision making, decision quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
3537 Some Investigations on Higher Mathematics Scores for Chinese University Student

Authors: Xun Ge, Jingju Qian

Abstract:

To investigate some relations between higher mathe¬matics scores in Chinese graduate student entrance examination and calculus (resp. linear algebra, probability statistics) scores in subject's completion examination of Chinese university, we select 20 students as a sample, take higher mathematics score as a decision attribute and take calculus score, linear algebra score, probability statistics score as condition attributes. In this paper, we are based on rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate importance of condition attributes with respective to decision attribute and strength of condition attributes supporting decision attribute. Results of this investigation will be helpful for university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Keywords: Rough set, higher mathematics scores, decision attribute, condition attribute.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
3536 Environmental Performance Assessment Model as a Sustainability Decision Tool for Small and Middle Sized Enterprises

Authors: Pavol Molnar, Martin Dolinsky

Abstract:

Paper deals with environmental metrics and assessment systems devoted to Small and Medium Sized Enterprises. Authors are presenting proposed assessment model which has an ability to discover current environmental strengths and weaknesses of Small and Middle Sized Enterprise. Suggested model has also an ambition to become a Sustainability Decision Tool. Model is able to identify "best environmental devision" in the company, and to quantify how this decision contributed into overall environmental improvement. Authors understand environmental improvements as environmental innovations (product, process and organizational). Suggested model is based on its own concept; however, authors are also utilizing already existing environmental assessment tools.

Keywords: Corporate Social Responsibility, (e)IMPACT model, Environmental metrics, , Small and Middle Sized Enterprises

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
3535 Simulation of Reactive Distillation: Comparison of Equilibrium and Nonequilibrium Stage Models

Authors: Asfaw Gezae Daful

Abstract:

In the present study, two distinctly different approaches are followed for modeling of reactive distillation column, the equilibrium stage model and the nonequilibrium stage model. These models are simulated with a computer code developed in the present study using MATLAB programming. In the equilibrium stage models, the vapor and liquid phases are assumed to be in equilibrium and allowance is made for finite reaction rates, where as in the nonequilibrium stage models simultaneous mass transfer and reaction rates are considered. These simulated model results are validated from the experimental data reported in the literature. The simulated results of equilibrium and nonequilibrium models are compared for concentration, temperature and reaction rate profiles in a reactive distillation column for Methyl Tert Butyle Ether (MTBE) production. Both the models show similar trend for the concentration, temperature and reaction rate profiles but the nonequilibrium model predictions are higher and closer to the experimental values reported in the literature.

Keywords: Reactive Distillation, Equilibrium model, Nonequilibrium model, Methyl Tert-Butyl Ether

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4207
3534 Classification of Business Models of Italian Bancassurance by Balance Sheet Indicators

Authors: Andrea Bellucci, Martina Tofi

Abstract:

The aim of paper is to analyze business models of bancassurance in Italy for life business. The life insurance business is very developed in the Italian market and banks branches have 80% of the market share. Given its maturity, the life insurance market needs to consolidate its organizational form to allow for the development of non-life business, which nowadays collects few premiums but represents a great opportunity to enlarge the market share of bancassurance using its strength in the distribution channel while the market share of independent agents is decreasing. Starting with the main business model of bancassurance for life business, this paper will analyze the performances of life companies in the Italian market by balance sheet indicators and by main discriminant variables of business models. The study will observe trends from 2013 to 2015 for the Italian market by exploiting a database managed by Associazione Nazionale delle Imprese di Assicurazione (ANIA). The applied approach is based on a bottom-up analysis starting with variables and indicators to define business models’ classification. The statistical classification algorithm proposed by Ward is employed to design business models’ profiles. Results from the analysis will be a representation of the main business models built by their profile related to indicators. In that way, an unsupervised analysis is developed that has the limit of its judgmental dimension based on research opinion, but it is possible to obtain a design of effective business models.

Keywords: Balance sheet indicators, Bancassurance, business models, ward algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261
3533 Optimal Maintenance and Improvement Policies in Water Distribution System: Markov Decision Process Approach

Authors: Jong Woo Kim, Go Bong Choi, Sang Hwan Son, Dae Shik Kim, Jung Chul Suh, Jong Min Lee

Abstract:

The Markov decision process (MDP) based methodology is implemented in order to establish the optimal schedule which minimizes the cost. Formulation of MDP problem is presented using the information about the current state of pipe, improvement cost, failure cost and pipe deterioration model. The objective function and detailed algorithm of dynamic programming (DP) are modified due to the difficulty of implementing the conventional DP approaches. The optimal schedule derived from suggested model is compared to several policies via Monte Carlo simulation. Validity of the solution and improvement in computational time are proved.

Keywords: Markov decision processes, Dynamic Programming, Monte Carlo simulation, Periodic replacement, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2818
3532 Geometric Operators in Decision Making with Minimization of Regret

Authors: José M. Merigó, Montserrat Casanovas

Abstract:

We study different types of aggregation operators and the decision making process with minimization of regret. We analyze the original work developed by Savage and the recent work developed by Yager that generalizes the MMR method creating a parameterized family of minimal regret methods by using the ordered weighted averaging (OWA) operator. We suggest a new method that uses different types of geometric operators such as the weighted geometric mean or the ordered weighted geometric operator (OWG) to generalize the MMR method obtaining a new parameterized family of minimal regret methods. The main result obtained in this method is that it allows to aggregate negative numbers in the OWG operator. Finally, we give an illustrative example.

Keywords: Decision making, Regret, Aggregation operators, OWA operator, OWG operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
3531 The Use of Information for Inventory Decision in the Healthcare Industry

Authors: H. L. Chan, T. M. Choi, C. L. Hui, S. F. Ng

Abstract:

In this study, we explore the use of information for inventory decision in the healthcare organization (HO). We consider the scenario when the HO can make use of the information collected from some correlated products to enhance its inventory planning. Motivated by our real world observations that HOs adopt RFID and bar-coding system for information collection purpose, we examine the effectiveness of these systems for inventory planning with Bayesian information updating. We derive the optimal ordering decision and study the issue of Pareto improvement in the supply chain. Our analysis demonstrates that RFID system will outperform the bar-coding system when the RFID system installation cost and the tag cost reduce to a level that is comparable with that of the barcoding system. We also show how an appropriately set wholesale pricing contract can achieve Pareto improvement in the HO supply chain.

Keywords: Efficient consumer response program, healthcare, inventory management, RFID system, bar-coding system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
3530 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: Multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9253
3529 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions

Authors: S. Pattanapairoj, D. Chetchotsak

Abstract:

This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.

Keywords: Sparse data, Classifications, Committee network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
3528 Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS)

Authors: C. Ardil

Abstract:

Multiple criteria decision making analysis (MCDMA) methods are applied to many real - life problems in different fields of engineering science and technology. The "preference analysis for reference ideal solution (PARIS)" method is proposed for an efficient MCDMA evaluation of decision problems. The multiple criteria aircraft evaluation approach is based on the integrated the mean weight, entropy weight, PARIS, and TOPSIS method, which eliminates the subjective importance weight assignment process. The evaluation criteria were identified from an extensive literature review of aircraft selection process. The aim of this study is to propose an efficient methodology for handling the aircraft selection process in which the proposed method solves effectively the MCDMA problem. A numerical example is presented to demonstrate the applicability and validity of the proposed MCDMA approach. 

Keywords: aircraft selection, aircraft, multiple criteria decision making, multiple criteria decision making analysis, mean weight, entropy weight, MCDMA, PARIS, TOPSIS, VIKOR, ELECTRE, PROMETHEE

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536
3527 Application of Stochastic Models to Annual Extreme Streamflow Data

Authors: Karim Hamidi Machekposhti, Hossein Sedghi

Abstract:

This study was designed to find the best stochastic model (using of time series analysis) for annual extreme streamflow (peak and maximum streamflow) of Karkheh River at Iran. The Auto-regressive Integrated Moving Average (ARIMA) model used to simulate these series and forecast those in future. For the analysis, annual extreme streamflow data of Jelogir Majin station (above of Karkheh dam reservoir) for the years 1958–2005 were used. A visual inspection of the time plot gives a little increasing trend; therefore, series is not stationary. The stationarity observed in Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF) plots of annual extreme streamflow was removed using first order differencing (d=1) in order to the development of the ARIMA model. Interestingly, the ARIMA(4,1,1) model developed was found to be most suitable for simulating annual extreme streamflow for Karkheh River. The model was found to be appropriate to forecast ten years of annual extreme streamflow and assist decision makers to establish priorities for water demand. The Statistical Analysis System (SAS) and Statistical Package for the Social Sciences (SPSS) codes were used to determinate of the best model for this series.

Keywords: Stochastic models, ARIMA, extreme streamflow, Karkheh River.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723