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Geometric Operators

In Decision Making with

Minimization of Regret

José M. Merig6, Montserrat Casanovas

obtaining another parameterized family of minimaignet

Abstract—We study different types of aggregation operatois a methods.

the decision making process with minimization afre¢. We analyze
the original work developed by Savage and the tecgark

developed by Yager that generalizes the MMR metb@ating a
parameterized family of minimal regret methods bing the ordered
weighted averaging (OWA) operator. We suggest a method that
uses different types of geometric operators suchhasweighted
geometric mean or the ordered weighted geometrcadpr (OWG)
to generalize the MMR method obtaining a new patarized family
of minimal regret methods. The main result obtaiirethis method
is that it allows to aggregate negative numbeithénOWG operator.
Finally, we give an illustrative example.

Keywords—Decision making, Regret, Aggregation operators,

OWA operator, OWG operator.

. INTRODUCTION

HE Ordered Weighted Geometric (OWG) operator
9 ic ( ) op Wa?been used in a wide range of applications [3] 4.[1/8 the

introduced by Chiclana et al. [1] and it provides
parameterized family of aggregation operators simib the
Ordered Weighted Averaging (OWA) operator introdiidxy
Yager [2]. Since their appearance, a lot of newmsibns have
been developed about them. For the OWA operatoGomd
mention [3] — [18] and for the OWG operator [19][29].
Basically, the OWG operator uses in the same aggioegthe
OWA operator and the geometric mean.
Among the great variety of extensions developed tifar

OWA and the OWG operator, this work will focus on a

article published recently by Yager [15] consisting

introduce the OWA aggregation in decision makinghwi

minimization of regret. The first methods for déms making
with minimization of regret were introduced by Sged30],
[31] and they consisted in use the paradigm of migation of
maximal regret (MMR). These methods have been géined
by Yager in [15] with the introduction of the OW/Aoerators
in the paradigm of MMR creating a parameterizedilfamf
minimal regret methods. In this paper, we proposeethod
that uses the OWG operator for generalize the MM#hiod
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In order to do so, this paper is organized ao¥al In
Section I, we briefly comment the OWA operator.e th
geometric mean and the OWG operator. In Sectionwd
summarize the main concepts of the traditional MM&thod
and the generalization developed by Yager. In 8edW¥, we
suggest a new generalization of the MMR method gusire
OWG operator in the aggregation step. Finally, act®n V,
we give an illustrative example in order to see erically the
results obtained with the new approach.

Il. AGGREGATIONOPERATORS

A. OWA Operator

The OWA operator was introduced in [2] and it po®s a
garameterized family of aggregation operators whicve

ollowing, we provide a definition of the OWA opéoa as
introduced by Yager [2].

Definition 1. An OWA operator of dimension is a mapping
OWAR'>R that has an associated weighting vedférof
dimensionn such that the sum of the weights is one and
[0, 1], then:

n
OWA@ay, &,..., 3) = Y Wb,
=1

)

whereb; is thejth largest of they.

From a more generalized perspective of the reardestep,
we have to distinguish between the Descending OWA
(DOWA) operator and the Ascending OWA (AOWA)
operator. The weights of these operators are celayeusing
W, = W*, .1, Wherew, is thejth weight of the OWA andr* 5.,
the jth weight of the AOWA operator. Note that the AOWA
operator is the dual of the DOWA operator as éxplained in
[8].

The OWA operator is a mean or averaging operatois i5
a reflection of the fact that the operator is cortative,
monotone, bounded and idempotent. It can also be
demonstrated that the OWA operator has as speasaiscthe
maximum, the minimum and the average criteria [2].

1SN1:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:4, No:3, 2010 publications.waset.org/11814.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences
Vol:4, No:3, 2010

Another issue to consider is the two measuresdntred by In this case, we also get thAAL(W) O [-1, 1]. We also
Yager [2] for characterizing the weighting vectmdahe type obtain the same results about the special casds asithe
of aggregation it performs. The first measure, dltégudinal maximum withBAL(W) = 1, the minimum witBBAL(W) = -

character, is defined as: the average criteria, the median and the olympé&rage with
BALW) = 0, and the Arrow-Hurwicz aggregation with
BA =21-1.
aw)= 3w, ( ij DR
j= "\h= B. Geometric Mean

The geometric mean is a traditional aggregationraipe
It can be shown thatr 00 [0, 1]. The more of the weight which has been used for different applications sagn [32],
located toward the bottom ¥, the closerr to 0 and the more [33]. It can be defined as follows:
of the weight located near the topWf the closerr to 1. Note
that for the minimuma(W) = 0, for the maximumm(W) = 1, Definition 2. A geometnc mean operator of dimensiofs a

and for the average criterigW) = 0.5. mappingGM: R —R’, such that:
The second measure introduced also in [2], is daile
entropy of dispersion dV and it is used to provide a measure n 1
of the information being used. It is defined as: GM(ay, &,..., @) = [](&)" (6)
n
HW) = - > wj In(w;) (3)whereR’ is the set of positive real numbers. The geometric
j=1

mean is commutative, monotonic, bounded and ideempot
If we consider that the arguments of the geometean are
That is, ifw, = 1h for all j, thenH(W) = In n, and the not equally important, then, we can use the weitjgeometric
amount of information used is maximumw{f= 1 for somg, mean in the aggregation. The weighted geometricnniea
known as step-OWA [9], ther(W) = 0, and the least amount generalization of the geometric mean as it caruelit as a
of information is used. special case of the formulation. It can be defiagdollows.
Note that it is also possible to study these memswith the
AOWA operator. The main difference is that the desing Definition 3. A weighted geometric mean is a mappitiG M
step used in the analysis is ascendant. R'—-R that has an associated weighting vettbof dimension

A third measure that could be used for the analgbithe n sych that the sum of the weights is onewand [0, 1], then:
weighting vectoW is what Yager called the balance operator

[12]. It is useful to analyse the balance betwesmiiring the n
arguments with high values or the arguments with values. WGMay, &;..., @) = [] a" (7)
It can be defined as follows. =1
n+1-2 Note that the weighted geometric mean becomes the
BAL(W) = Z [ 1 Jj i (4) geometric mean whem, = 1h for alli.

C. OWG Operator

It can be shown thaBAL(W) O [-1, 1]. Note that for the The OWG operator was introduced in [1] and it pded a
maximum we geBAL(W) = 1, for the minimumBAL(W) = - family of aggregation operators similar to the OWperator

and for the average criteriBAL(W) = 0. Also note that for the as 't_ includes  the maximum and_ the minimum amory it
median and the olympic averaggiL(W) = 0. For the Arrow- special cases. It consists in comt_)lne the OW.A dp_erfﬁ_uth
Hurwicz aggregation, assuming that the usual aggiey of the geometric mean. In t_he following, we providdedinition
this method isiMax{a} + (1 — Min{a}, BALW) = 24 — 1. of the OWG operator as introduced by Xu and Da.[27]
As it can be shown, for an optimistic situation,end > 0.5,
the balance is positive and for a pessimistic sdnawhereA
< 0.5, the balance is negative.

If we analyse the balance in the AOWA operator, cae
use a similar formulation.

Deflnmop 4. An OWG operator of dimensiamis a mapping
OWGR' —R' that has an associated weighting vedbof
dimensionn such that the sum of the weights is one and
[0, 1], then:

- ApY
j=1

whereb; is thejth largest of they, andR’ is the set of positive
real numbers.
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From a more generalized perspective of the reardesiep in

As we can see, the OWG operator cannot aggregate

the OWG operator, we have to distinguish betweem tmegative numbers in the aggregation because thealtses
Descending OWG (DOWG) operator and the Ascendingecome inconsistent. If we analyse the resultscaveobserve

OWG (AOWG) operator [27]. The weights of these apers
are related by using; = w1, wherew, is thejth weight of
the OWG andw*,5.1 the jth weight of the AOWG operator.

that depending on the number of arguments with thega
values, the result will be positive or negativetHé sum the
number of arguments with negative values is evieen,tthe

Note that the AOWG operator is the dual of the DOWG@nal result will be positive. If the sum is oddien, the final

operator.

As it is seen in [1], the OWG operator is commurati
monotonic, bounded and idempotent.

By choosing a different manifestation of the weliigft
vector, we are able to obtain different types ofjragation
operators [1]. For example, we get the maximum whes 1
andw; = 0 for allj # 1, the minimum whem, = 1 andw; = 0
for all j # n, and the geometric mean when= 1h for all j.
Other examples of aggregations with OWG operatars lue
seenin [27].

Other types of aggregations that could be obtawi¢d the
OWG operator are the weighted geometric mediartize&-Z
OWG weights. For the weighted geometric median,wile
use a similar approach than the one used by YagdOj for
the weighted OWA median. The difference with thediae is
that in this case, we consider the weights asstiaith the
arguments. Then, instead of looking for the argumeéth the
(n/2}h ordered position, we will look for the orderedsfiion
where the sum of the weights is 0.5. That is, wiesegiect the
argument OW&,,..., &) = by where by is the kth largest
argument of the; such that the sum of the weights from kto
is equal or higher than 0.5 and the sum of the htei§fom 1
to k — 1 is less than 0.5. Note that whien i, for all i andj,
wherej is thejth argument ob; andi is theith argument o#;,
it is found the weighted geometric median for theighited
geometric mean.

result will be negative. As we can see, this situmatis
completely inconsistent with the aggregation wheeeshould
expect similar results independently that the numbé
arguments is even or odd. In the following Sectioe, are
going to suggest a methodology that is able to detti
negative numbers when using the OWG operator.

I1l.  DECISIONMAKING USING MINIMIZATION OF MAXIMAL
REGRET

The use of minimization of maximal regret in dewisi
making was suggested by Savage in [30], [31]. i b&
summarized as follows.

Assume we have a decision problem in which we have
collection of alternativesA;, ..., A} with states of nature,
..., 9} ¢ is the payoff to the decision maker if he selects
alternativeA; and the state of nature$s The matrixR whose
components are the, is the regret matrix. The objective of
the problem is to select the alternative which Ilsasisfies the
payoff to the decision maker. In order to do thed, should
follow the following steps:

Stepl: Calculate the payoff matrix.

Step2: CalculateC; = Max{c;} for eachsS.

Step3: Calculater = C; —c; for each pai#; andS.
Step4: CalculateR = Max{r;} for eachA;.

Step5: Select: such thaR: = Min{R}.

For the E-Z OWG weights based on the E-Z OWA wesight As we can see, once established the regret mahis,

[14], we could distinguish between two classestha first
class, which has an optimistic point of view, wesigsw; =

(1/k) for j = 1 tok andw; = O forj > k. In the second class,

which has a pessimistic point of view, we assigr O forj =
1ton-kandw = (1K) forj =n-k+ 1 ton.

method uses a pessimistic criteria. Using a similar
methodology, we could use other criteria instead thod
pessimistic one. For example, we could use the ageer
criteria, the Hurwicz criteria, the weighted medme OWA
operator or the OWG operator. As the OWA operator

If we use the same methodology in the AOWG Opesato,generalizes a wide range of aggregation operatans as the

we can also obtain different types of aggregatiperators by
using a different manifestation in the weightingctee. The
weights of these operators are relatedvpy w* .14, wherew;
is thejth weight of the DOWG (or OWG) operator anti,.;
thejth weight of the AOWG operator.

Note that in this case it is also possible to ass®lgifferent
measures about the weighting vector such as tliteditil
character, the entropy of dispersion and the balaperator.
For the attitudinal character, we could use themidation
explained in [16] when it uses the particular caseODWG
operators. For the entropy of dispersion and fer lthlance
operator, as we are strictly interested in the ttig vector,
we could use the same formulation as it has beplaieed in
Section 2.1.
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average, the Hurwicz criteria and the weighted meanare
going to consider this case when taking decisioitk the
MMR method.

This generalization was suggested by Yager in [Hd.
proposed to use the OWA operator in the regretirafthen,
all the other criteria could be included in thigyesgation as
particular cases of using an established attitudiharacter
such as the maximum, the minimum, the average aed t
weighted average. Yager called this generalizatienMin-W-
Regret (MWR) procedure. In order to distinguishwestn the
use of the average, the weighted average and théA OW
operator in the regret matrix, we prefer to caét tase with
OWA operators as the Min-OWA-Regret procedure alt be
summarized as follows:

Stepl: Calculate the payoff matrix.
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Step2: CalculateC; = Max{c;} for eachS. =(@Anh)@ - P forj=1ton-1 withg O[O0, 1]. In this type of
Step3: Calculate;; = C; —¢;; for each paily andS. S-OWA, if B = 0 we obtain the average andgf= 1, the
Step4: CalculateR = OWA(ry, ..., ry) using (1), for each minimum. Finally, the generalized S-OWA operator is
. obtained whem; = (Ih)(1-(a+pB) +a,w,= (1h)(1- (a+
Step5: Select: such thaR. = Min{R}. B) + B, andw; = (1h)(1 - (a + f) forj = 2 ton — 1 wherea, 8

) . ) . 0O [0, 1] anda + B< 1. In this case, ifr = 0, the generalized S-

As we can see, by choosing a different manifestatidhe oA operator is transformed in the andlike S-OW/Aexgtor

weighting vecFo_r of step 4, we can obtain differenteria 5 if 3= 0, in the orlike S-OWA operator. Also note tiatr

such as the original work developed by Savage [3a}; + =1, the generalized S-OWA operator is transforinetie
) . Hurwicz criteria.

1) Whenw; = 1 andw; = 0,0 j # 1; we get the traditional  another type of OWA operator is the centered-OWA
Min-Max regret method. Thus, the original workyeights. It has been recently suggested by Yag#r did it
developed by Savage is a particular case of thigyys that an OWA operator is a centered aggregiftioris
generalization. _ _ _ symmetric, strongly decaying and inclusive. It ysnmetric if

2) Whenw.n =1 anqv\(j = 0,0]j #n; we associate with each W, = W It is strongly decaying whein< j < (n + 1)/2, then
alternative the minimal regret. _ _w; <w; and wheri > > (n + 1)/2, therw; <w;. It is inclusive if

3) Whenw; = 1/n, L] j; we are aggregating the regret matrixy, > o Note that it is possible to consider a refiaxaof the
with the average criteria. second condition by using; < w; instead ofw < w;. These

. ) . cases are known as softly decaying centered OW Aatgre A
Other families of aggregation operators could b&iabd o icylar case of this situation is the averageabse all its

by using different manifestations of the weightiregtor. For weights are equal. Another special case of certOmMA

example, whemy, = 1 andw; = 0 for allj # k we are using the gnhears when the third condition is not accomptisihis

step-OWA [9] in the regret matrix. Note thakif: 1, the step- e is known as non-inclusive centered-OWA operato

OWA is transformed in the maximum andkif= n, the step- particular case of this situation is the OWA-median

OWA becomes the minimum. _ As we can see, the generalized Min-W-Regret method
Whenw, = 1infork<j<k+m-1andw=0forj>k+m accomplishes the same properties as the original AOW

andj < k, we are using the window-OWA [9] in the regrefoperator such as commutativity, monotonicity, idetepcy
matrix. Note thak andm must be positive integers such tkat 5nd boundedness.

+m-1<n. Also note that iln =k = 1, the window-OWA'is  |n order to adequate the generalized Min-W-Regret

transformed in the maximum, iifi = 1 andk = n, the window- approach to a degree of optimism with the weightiegtor
OWA becomes the minimum and iih = n andk = 1, the ysed in the regret matrix, Yager defined R-OPT(W) =
window-OWA is transformed in the average criteria. a(W). Here a(W) represents the attitudinal character intro-

If w; =w, =0 and for all others = 1/(n - 2), we are using duced in [2] for the original OWA operator, and RTQW) is
the olympic average [13] in the regret matrix. Nttet ifn = the adapted version for the Min-W-Regret approatle. see
3 orn = 4, the olympic average is transformed in the OWAnat forw, = 1 andw; = 0,0 # 1, a(W) = 1 and hence R-
median [10] and im =n - 2 andk = 2, the window-OWA is OPT(W) = 0, while fow, = 1 andw; = 0,0 j #n; a(W)= 0
transformed in the olympic average. and hence R-OPT(W) = 1.

Another type of aggregation that could be usedwinregret  Analysing the attitudinal character, we see thatgefa
matrix is the E-Z OWA weights. In this case, we Wlo developed a method that adapted the generalized\Win
dlstlngmsh_between two classes. Iq the first cl_wasas&grw,- Regret approach to the degree of optimism of thighieg
= (1K) for j = 1 tok andw; = 0 forj >k, and in the second yector but it could be simplified by using the AOVé@erator.
class, we assign; = 0 forj = 1 ton-kandw; = (1K) forj=n  Then, the aggregation would reflect automaticallye t
-k+ 1ton. attitudinal character. The reason for this probt=uld come

We note that the median and the weighted mediaralsan from a theoretical point of view where we could shgt the
be used in the regret matrix. For the mediam i6 odd we OWA operator is appropriate to use in situationgolving
assignw, + 12 = 1 andw; = 0 for all others, and if is even we penefits while the AOWA operator is appropriateuse in
assign for exampl@v,, = W) + 1 = 0.5. For the weighted sjtuations involving costs. From a more generalized
median, we follow a different procedure than [IWe select perspective, we could say that we should use theAOW
the kth largest argument of the such that the sum of the operator in situations where the highest valuehef payoff
weights from 1 td is equal or higher than 0.5 and the sum ofatrix is the best result while we should use th@WA
the weights from 1 t&— 1 is less than 0.5. operator in situations where the smallest valughis best

Another interesting family is the S-OWA operato}, [A1]. result.

We can divide it in three types: the orlike, thelldee and the The procedure to follow with the AOWA operator isry
generalized S-OWA operator. The orlike S-OWA opmras  similar with the difference that now the reorderistgp is
obtained whenv, = (1h)(1 - a) + a, andw, = (1h)(1 - a) for developed in ascending order. We can summarizesit a
j = 2 ton with a O [0, 1]. Note that ifa = 0, we obtain the follows:

average and ifr = 1, we obtain the maximum. The andlike S-

OWA operator is obtained whem, = (1h)(1 - 8 + B andw, Step 1:Calculate the payoff matrix.

A
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Step 2:CalculateC; = Max{c;} for eachS.

Step 3:Calculater; = C; —c;; for each pai#; andS.
Step 4:CalculateR = AOWA(riy, ..., lin), for eachA,.
Step 5:SelectA such thaR: = Min{R}.

As we can see, by choosing a different manifestaticthe
weighting vector of step 4, we can obtain differenteria
such as the original work developed by Savagemtieamum,
the average, etc. Note that the weights of thesgabqrs are
related byw, = w*,.154, wherew; is the jth weight of the
DOWG (or OWG) operator and™* ., the jth weight of the
AOWG operator.

In this case, we can see that we obtain directydiggree of
optimism. For example, if, = 1 andw; = 0,0 #n; a(W) =
0; and ifw; = 1 andw; = 0,0 #1; a(W) = 1. If we consider
the properties of this generalized Min-W-Regret hodt with
the AOWA operator, we also find that it is commiviat
monotonic, bounded and idempotent.

IV. USING THEOWG OPERATOR INDECISIONMAKING WITH
MINIMIZATION OF REGRET

The use of the OWG operator in decision making wit

minimization of regret is an alternative when takuohecisions
with regret methods. It consists in introduce th§@ operator
in the aggregation step of the regret matrix. Tlodivation for
using the OWG operator is because there are somesc
where we could prefer to aggregate with a geomefrirator
instead of the traditional methods used previoudigre, the
procedure will be the same as for the case with QNEA
operator with the difference that now we will use OWG
operator in the aggregation phase. Then, we camauize the
procedure as follows:

result obtained is similar as in the previous casbere the
best value of each state of nature did not addregwet in the
whole aggregation.

In this case, we could also obtain different aggtegs in
step 4 by choosing a different weighting vectorhsas the
original regret work developed by Savage:

1) Whenw, = 1 andw; = 0, 0 j # 1, we get the traditional
Min-Max regret method with the difference that nédve
result has one unit more. Thus, the original warkedoped
by Savage can be considered as a particular caff@sof
generalization.

2) Whenw, = 1 andw; = 0,0 j # n; we associate with each
alternative the minimal regret.

3) Whenw; = 1/n,0 j; we are aggregating the regret matrix
with the geometric mean.

Other families of geometric operators could be ivleiz for
the Min-OWG-Regret method by choosing different
manifestations of the weighting vector. For exampleenw
f 1 andw; = 0 for allj # k we are using the step-OWG [27] in
the regret matrix. Note that ik = 1, the step-OWG is
transformed in the maximum and kf = n, the step-OWG
becomes the minimum. Also note that the resultaiobt for

dhe step-OWG are the same than the results obtdareithe

step-OWA.

Other aggregations such as the OWG median and the
weighted OWG median can also be used in the Min-OGWG
Regret method. For the OWG median, that it is basethe
OWA median [10], ifn is odd we assigw, + 12 = 1 andw; =
0 for all others, and ifi is even we assign for examplg, =
n2) + 1 = 0.5. Note that ifh is odd, the result obtained in the

Assume we have a decision problem in which we have" 9 )
collection of alternativesAy, ..., A} with states of natureg, OWG median is the same than the result found inQiéA

... S} ¢ is the payoff to the decision maker if he selectedian.

alternativeA, and the state of nature$s The matrixRwhose ~ FOr the weighted OWG median, we follow the same
components are thg, is the regret matrix. The objective ofProcedure as used for the weighted OWA median. lect

the problem is to select the alternative which Isasisfies the
payoff to the decision maker. In order to do thee, should
follow the following steps:

Step 1:.Calculate the payoff matrix.

Step 2:CalculateC; = Max{c;} for eachS.

Step 3:Calculater; = C; / g; for each paily andS.

Step 4:CalculateR, = OWG(jy, ..., rn) using (8), for each
A.
Step 5:SelectA- such thaR« = Min{R}.

Here, we should note that in the construction ef tbgret
matrix, we divide the values because if we do rothds, we
would not get consistent results as the OWG opeonot
aggregate arguments with value 0. The reason &suseovhen
aggregating with 0, the whole aggregation autorahyic

the kth largest argument of the such that the sum of the
weights from 1 td is equal or higher than 0.5 and the sum of
the weights from 1 t& - 1 is less than 0.5.

Another family is the centered-OWG operator. We can
define it in a similar way as Yager [17] definec tbentered-
OWA operator. An OWG operator is a centered agdiay
it is symmetric, strongly decaying and inclusivd. i
symmetric ifw; = W, 4. It is strongly decaying whern<j < (n
+ 1)/2, therw;, <w; and wheri >j = (n + 1)/2, therw; <w. It
is inclusive ifw; > 0. Note that it is possible to consider a
relaxation of the second condition by usimgs w; instead of
w; < w. These cases are known as softly decaying centered
OWG operator. A particular case of this situatian the
geometric mean because all the weights are equadthar
special case of centered-OWG appears when the third
condition is not accomplished. This type is knovws reon-

becomes 0. Analysing this change, we see that rwv tinclusive centered-OWG operator. A particular casethis
aggregation is stable because for the best casken wsituation is the OWG-median.
multiplying by 1, the result continues to be themeaThen, the
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If wy =w, = 0 and for all others; = 1/(n - 2), we are using AOWG operator, we find the same properties as Wl

the olympic-OWG operator in the regret matrix. Nttat if n

original OWG operator.

= 3 orn = 4, the olympic-OWG is transformed in the OWG-

median and ifm = n - 2 andk = 2, the window-OWG is

transformed in the olympic-OWG.

A further family of Min-OWG-Regret methods is theirm
window-OWG-Regret method. This family is found when=
Imfork<j<k+m-1andw =0 forj >k + mandj <k.

V. [LLUSTRATIVE EXAMPLE

In the following, we are going to develop an exanpi
order to understand numerically all the procedaemamented
above. We will distinguish between two general sase the
first case, we will construct the regret matrixtire original

Note that in this cask andm must also be positive integersform as it was developed by Savage [30], [31] aredwill

such thak + m - 1 < n. Also note that iim =k = 1, the Min-
window-OWG-Regret is transformed in the maximunmif 1
and k = n,
minimum and ifm = n andk = 1, the Min-window-OWG-
Regret is transformed in the geometric mean.

A further type of geometric operator that couldused in
the regret matrix is the E-Z OWG weights. In thypd of
aggregation, we find two different classes. Infirs class, we
assignw; = (1K) forj = 1 tok andw; = O forj >k, and in the
second class, we assign= 0 forj = 1 ton — k andw; = (1K)
forj=n-k+ 1ton.

Another interesting issue to consider is the prigeof this
type of generalized Min-W-Regret method. As we sas, it
accomplishes the same properties than the OWAorersi

1) Commutativity: any permutation of the arguments tiees
same evaluation.

2) Monotonicity: If r; > d;
OWG(dy,..., d).

3) Boundedness: Minr{} < OWG(y,..., k) < Max {r;}.

4) Idempotency: If; =r, for alli = OWG(y,..., ) =T.

for all i = OWG(y,..., I) >

Another alternative that we could use in the agafieg of
the regret matrix is the AOWG operator. The motormatfor
use an ascending order appears in situations wihesmallest
value is the best result because then, the wegghtator will
consider first the best result and so on. The phoee to
follow with the AOWG operator is very similar witthe
difference that now the reordering step is develope
ascending order. We can summarize it as follows:

Step 1:Calculate the payoff matrix.

Step 2:CalculateC; = Max{c;} for eachS.

Step 3:Calculater; = G / g; for each pairy andS.
Step 4:CalculateR = AOWG(iy, ..., In), for eachA,.
Step 5:SelectA- such thaR. = Min{R}.

Again, in this case we also add one unit in ordekeep
stable the aggregation. By choosing a differentgiing
vector we could also obtain different aggregationstep 4
such as the original regret work developed by Savdge

consider the aggregation with the arithmetic mesi)( with
the weighted average (WA), with the OWA operatad aith

the Min-window-OWG-Regret becomes thethe AOWA operator. In the second case, we will twies the

regret matrix as it has been explained in the Mi® Regret
method and we will consider the aggregation wita GM,
with the WGM, with the OWG and the AOWG operator.
With these eight types of aggregations we will ¢be
different results obtained by using a different reggtion in
the decision. Note that as the geometric constmctif the
regret matrix is completely different than the farietic one,
the results will also be different. The interestipgint to
analyse is to see which results give the sameidacdout the
selection of an alternative. In this example, wi asume the
following weighting vector: W = (0.1, 0.2, 0.2, 0R2).

Step 1:Assume that an enterprise wants to increase its
volume of activities. In order to do this, the oaf directors
has established five possible investments thatetiterprise
could develop in the future.

(1) A;is afood company called

(2) A, is a chemical company call&d
(3) Agis a car company callei

(4) Asis a TV company called.

(5) Asis a computer company call&d

After careful review of the information, the expetiave
given the following general information. They have
summarized the information of the investments gjvihe
expected results depending on the five states tofe§ that
could happen in the future. The results are showalle |.

TABLE |
PAYOFF MATRIX
S S S S S
Ar 60 20 10 40 50
A 80 50 20 10 20
As 30 40 40 30 40
Ay 20 30 20 30 80
As 70 40 40 10 20

Step 2 — Step For the first case, that affects the AM, the

maximum, the average, the median, the step-AOW®, thWA, the OWA operator and the AOWA operator, we will
window-AOWG, the olympic-AOWG, the centered-AOWG,calculateC; = Max{c;} for each§ andr; = C; — ¢;, for each
the E-Z AOWG, the S-AOWG, etc. Analysing the prdjgsr pair A andS. For the second case, that affects the GM, the

of this type of generalized Min-W-Regret method hwihe WGM, the OWG operator and the AOWG operator, we wil
calculateC; = Max{c;} for each§ andr; = C; / ¢, for each
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pair A, andS. The results for the first case are shown in table Step 5:As we can see, with the AM we cannot select an

Il and the results for the second case are shovabie 111 alternative as we get the same result for all efrthWith the
WA and with the AOWA operator we select alternativas it

TABLE Il gives the lowest expected cost. With the OWA omerate
REGRET MATRIX will select alternative 2 as in this case, this geés the lowest

expected value. For the GM, the WGM, the OWG aral th

> = = S S AOWG operators, we select alternative 3 as in tltases this
A 20 30 30 0 30 alternative is the one with the lowest value.
A 0 0 20 30 60
As 50 10 0 10 40 VI. CONCLUSION
Aa 60 20 20 10 0 In this paper, we have suggested the use of the OWG
As 10 10 0 30 60 operator in situations of decision making with miigation of
regret. For doing this, we have made some changebei
TABLE Ill construction of the regret matrix in order to adépio the
REGRET MATRIX FOR THE GEOMETRIC OPERATORS aggregation characteristics of the OWG operatorth\ttis
new construction, we have shown that it is possibleleal
S S S S S . . .
~ T3 5 2 1 16 W|th_ n_e_gatlve numbers in the OWG operator by trammsing
the initial results in positive numbers. We havealeped the
Ae 1 1 2 4 4 decision making process distinguishing in the agatien step
As 2.66 1.25 1 1.33 2 between the use of the OWA operator, the AOWA dpera
A 4 1.66 2 133 1 the OWG operator and the AOWG operator. Finally, an
As 1.14 125 1 4 4 illustrative example has been given where we h&esve the

process to follow in a decision making problem with
Step 4:Aggregate the regret matrix with each aggregatiominimization of regret.
operator according to its formulation. For thetficeise, we In future research, we expect to develop new ampheR
will aggregate table Il with the AM, with the WA, itv the about using different types of aggregation opesatam
OWA and with the AOWA operators. The OWA operatoda decision making problems with minimization of reigaed we
the AOWA operator are defined by (1). Note thatAtM is a  will apply it in other decision making problems Buas human

special case of the OWA operator wivgr= 1h, for allj. For  resource selection, strategic management, etc.
the WA, we will associate each weighwith its corresponding

regret argumerijt For the second case, we will aggregate table REFERENCES
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